{"title":"在严格的完整交叉点上的分辨率","authors":"Tony J. Puthenpurakal","doi":"10.1007/s00013-025-02133-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((Q, \\mathfrak {n} )\\)</span> be a regular local ring and let <span>\\(f_1, \\ldots , f_c \\in \\mathfrak {n} ^2\\)</span> be a <i>Q</i>-regular sequence. Set <span>\\((A, \\mathfrak {m} ) = (Q/(\\textbf{f} ), \\mathfrak {n} /(\\textbf{f} ))\\)</span>. Further assume that the initial forms <span>\\(f_1^*, \\ldots , f_c^*\\)</span> form a <span>\\(G(Q) = \\bigoplus _{n \\ge 0}\\mathfrak {n} ^i/\\mathfrak {n} ^{i+1}\\)</span>-regular sequence. Without loss of any generality, assume <span>\\(\\operatorname {ord}_Q(f_1) \\ge \\operatorname {ord}_Q(f_2) \\ge \\cdots \\ge \\operatorname {ord}_Q(f_c)\\)</span>. Let <i>M</i> be a finitely generated <i>A</i>-module and let <span>\\((\\mathbb {F} , \\partial )\\)</span> be a minimal free resolution of <i>M</i>. Then we prove that <span>\\(\\operatorname {ord}(\\partial _i) \\le \\operatorname {ord}_Q(f_1) - 1\\)</span> for all <span>\\(i \\gg 0\\)</span>. We also construct an MCM <i>A</i>-module <i>M</i> such that <span>\\(\\operatorname {ord}(\\partial _{2i+1}) = \\operatorname {ord}_Q(f_1) - 1\\)</span> for all <span>\\(i \\ge 0\\)</span>. We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"17 - 28"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolutions over strict complete intersections\",\"authors\":\"Tony J. Puthenpurakal\",\"doi\":\"10.1007/s00013-025-02133-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((Q, \\\\mathfrak {n} )\\\\)</span> be a regular local ring and let <span>\\\\(f_1, \\\\ldots , f_c \\\\in \\\\mathfrak {n} ^2\\\\)</span> be a <i>Q</i>-regular sequence. Set <span>\\\\((A, \\\\mathfrak {m} ) = (Q/(\\\\textbf{f} ), \\\\mathfrak {n} /(\\\\textbf{f} ))\\\\)</span>. Further assume that the initial forms <span>\\\\(f_1^*, \\\\ldots , f_c^*\\\\)</span> form a <span>\\\\(G(Q) = \\\\bigoplus _{n \\\\ge 0}\\\\mathfrak {n} ^i/\\\\mathfrak {n} ^{i+1}\\\\)</span>-regular sequence. Without loss of any generality, assume <span>\\\\(\\\\operatorname {ord}_Q(f_1) \\\\ge \\\\operatorname {ord}_Q(f_2) \\\\ge \\\\cdots \\\\ge \\\\operatorname {ord}_Q(f_c)\\\\)</span>. Let <i>M</i> be a finitely generated <i>A</i>-module and let <span>\\\\((\\\\mathbb {F} , \\\\partial )\\\\)</span> be a minimal free resolution of <i>M</i>. Then we prove that <span>\\\\(\\\\operatorname {ord}(\\\\partial _i) \\\\le \\\\operatorname {ord}_Q(f_1) - 1\\\\)</span> for all <span>\\\\(i \\\\gg 0\\\\)</span>. We also construct an MCM <i>A</i>-module <i>M</i> such that <span>\\\\(\\\\operatorname {ord}(\\\\partial _{2i+1}) = \\\\operatorname {ord}_Q(f_1) - 1\\\\)</span> for all <span>\\\\(i \\\\ge 0\\\\)</span>. We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"17 - 28\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02133-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02133-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let \((Q, \mathfrak {n} )\) be a regular local ring and let \(f_1, \ldots , f_c \in \mathfrak {n} ^2\) be a Q-regular sequence. Set \((A, \mathfrak {m} ) = (Q/(\textbf{f} ), \mathfrak {n} /(\textbf{f} ))\). Further assume that the initial forms \(f_1^*, \ldots , f_c^*\) form a \(G(Q) = \bigoplus _{n \ge 0}\mathfrak {n} ^i/\mathfrak {n} ^{i+1}\)-regular sequence. Without loss of any generality, assume \(\operatorname {ord}_Q(f_1) \ge \operatorname {ord}_Q(f_2) \ge \cdots \ge \operatorname {ord}_Q(f_c)\). Let M be a finitely generated A-module and let \((\mathbb {F} , \partial )\) be a minimal free resolution of M. Then we prove that \(\operatorname {ord}(\partial _i) \le \operatorname {ord}_Q(f_1) - 1\) for all \(i \gg 0\). We also construct an MCM A-module M such that \(\operatorname {ord}(\partial _{2i+1}) = \operatorname {ord}_Q(f_1) - 1\) for all \(i \ge 0\). We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.