在严格的完整交叉点上的分辨率

IF 0.5 4区 数学 Q3 MATHEMATICS
Tony J. Puthenpurakal
{"title":"在严格的完整交叉点上的分辨率","authors":"Tony J. Puthenpurakal","doi":"10.1007/s00013-025-02133-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((Q, \\mathfrak {n} )\\)</span> be a regular local ring and let <span>\\(f_1, \\ldots , f_c \\in \\mathfrak {n} ^2\\)</span> be a <i>Q</i>-regular sequence. Set <span>\\((A, \\mathfrak {m} ) = (Q/(\\textbf{f} ), \\mathfrak {n} /(\\textbf{f} ))\\)</span>. Further assume that the initial forms <span>\\(f_1^*, \\ldots , f_c^*\\)</span> form a <span>\\(G(Q) = \\bigoplus _{n \\ge 0}\\mathfrak {n} ^i/\\mathfrak {n} ^{i+1}\\)</span>-regular sequence. Without loss of any generality, assume <span>\\(\\operatorname {ord}_Q(f_1) \\ge \\operatorname {ord}_Q(f_2) \\ge \\cdots \\ge \\operatorname {ord}_Q(f_c)\\)</span>. Let <i>M</i> be a finitely generated <i>A</i>-module and let <span>\\((\\mathbb {F} , \\partial )\\)</span> be a minimal free resolution of <i>M</i>. Then we prove that <span>\\(\\operatorname {ord}(\\partial _i) \\le \\operatorname {ord}_Q(f_1) - 1\\)</span> for all <span>\\(i \\gg 0\\)</span>. We also construct an MCM <i>A</i>-module <i>M</i> such that <span>\\(\\operatorname {ord}(\\partial _{2i+1}) = \\operatorname {ord}_Q(f_1) - 1\\)</span> for all <span>\\(i \\ge 0\\)</span>. We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"17 - 28"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolutions over strict complete intersections\",\"authors\":\"Tony J. Puthenpurakal\",\"doi\":\"10.1007/s00013-025-02133-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((Q, \\\\mathfrak {n} )\\\\)</span> be a regular local ring and let <span>\\\\(f_1, \\\\ldots , f_c \\\\in \\\\mathfrak {n} ^2\\\\)</span> be a <i>Q</i>-regular sequence. Set <span>\\\\((A, \\\\mathfrak {m} ) = (Q/(\\\\textbf{f} ), \\\\mathfrak {n} /(\\\\textbf{f} ))\\\\)</span>. Further assume that the initial forms <span>\\\\(f_1^*, \\\\ldots , f_c^*\\\\)</span> form a <span>\\\\(G(Q) = \\\\bigoplus _{n \\\\ge 0}\\\\mathfrak {n} ^i/\\\\mathfrak {n} ^{i+1}\\\\)</span>-regular sequence. Without loss of any generality, assume <span>\\\\(\\\\operatorname {ord}_Q(f_1) \\\\ge \\\\operatorname {ord}_Q(f_2) \\\\ge \\\\cdots \\\\ge \\\\operatorname {ord}_Q(f_c)\\\\)</span>. Let <i>M</i> be a finitely generated <i>A</i>-module and let <span>\\\\((\\\\mathbb {F} , \\\\partial )\\\\)</span> be a minimal free resolution of <i>M</i>. Then we prove that <span>\\\\(\\\\operatorname {ord}(\\\\partial _i) \\\\le \\\\operatorname {ord}_Q(f_1) - 1\\\\)</span> for all <span>\\\\(i \\\\gg 0\\\\)</span>. We also construct an MCM <i>A</i>-module <i>M</i> such that <span>\\\\(\\\\operatorname {ord}(\\\\partial _{2i+1}) = \\\\operatorname {ord}_Q(f_1) - 1\\\\)</span> for all <span>\\\\(i \\\\ge 0\\\\)</span>. We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"17 - 28\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02133-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02133-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\((Q, \mathfrak {n} )\)为正则局部环,\(f_1, \ldots , f_c \in \mathfrak {n} ^2\)为q正则序列。设置\((A, \mathfrak {m} ) = (Q/(\textbf{f} ), \mathfrak {n} /(\textbf{f} ))\)。进一步假设初始形式\(f_1^*, \ldots , f_c^*\)形成一个\(G(Q) = \bigoplus _{n \ge 0}\mathfrak {n} ^i/\mathfrak {n} ^{i+1}\) -正则序列。在不丧失任何一般性的前提下,假设\(\operatorname {ord}_Q(f_1) \ge \operatorname {ord}_Q(f_2) \ge \cdots \ge \operatorname {ord}_Q(f_c)\)。设M是一个有限生成的a模,设\((\mathbb {F} , \partial )\)是M的最小自由分辨率,然后证明\(\operatorname {ord}(\partial _i) \le \operatorname {ord}_Q(f_1) - 1\)对于所有的\(i \gg 0\)。我们还构造了一个MCM a模块M,使得\(\operatorname {ord}(\partial _{2i+1}) = \operatorname {ord}_Q(f_1) - 1\)适用于所有\(i \ge 0\)。对于任意完全交环上模的最小自由分辨率下映射的子理想的周期性,我们也给出了一个相当简单的证明(不一定严格)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolutions over strict complete intersections

Let \((Q, \mathfrak {n} )\) be a regular local ring and let \(f_1, \ldots , f_c \in \mathfrak {n} ^2\) be a Q-regular sequence. Set \((A, \mathfrak {m} ) = (Q/(\textbf{f} ), \mathfrak {n} /(\textbf{f} ))\). Further assume that the initial forms \(f_1^*, \ldots , f_c^*\) form a \(G(Q) = \bigoplus _{n \ge 0}\mathfrak {n} ^i/\mathfrak {n} ^{i+1}\)-regular sequence. Without loss of any generality, assume \(\operatorname {ord}_Q(f_1) \ge \operatorname {ord}_Q(f_2) \ge \cdots \ge \operatorname {ord}_Q(f_c)\). Let M be a finitely generated A-module and let \((\mathbb {F} , \partial )\) be a minimal free resolution of M. Then we prove that \(\operatorname {ord}(\partial _i) \le \operatorname {ord}_Q(f_1) - 1\) for all \(i \gg 0\). We also construct an MCM A-module M such that \(\operatorname {ord}(\partial _{2i+1}) = \operatorname {ord}_Q(f_1) - 1\) for all \(i \ge 0\). We also give a considerably simpler proof regarding the periodicity of ideals of minors of maps in a minimal free resolution of modules over arbitrary complete intersection rings (not necessarily strict).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信