固体废物处理研究进展综述

IF 3 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Lvhan Zhu, Zixiao Wu, Dongsheng Shen, Foquan Gu, Lulu Wang, Yuyang Long
{"title":"固体废物处理研究进展综述","authors":"Lvhan Zhu,&nbsp;Zixiao Wu,&nbsp;Dongsheng Shen,&nbsp;Foquan Gu,&nbsp;Lulu Wang,&nbsp;Yuyang Long","doi":"10.1007/s10163-025-02273-w","DOIUrl":null,"url":null,"abstract":"<div><p>Solid waste disposal is a complex field. Based on bibliometric analysis method, the research progress of solid waste disposal was evaluated with Web of Science core database, VOSviewer and Citespace. It shows that the strongest burst keywords, neural networks first appeared in 2008 and have been developing ever since. Then, the models and higher heating value appeared after 2016 and 2020, respectively. In 2008–2024, 70 % of the top journals and 30 % of the top paper related with energy production prediction. The hot spots are municipal solid waste (59.5 %), resource generation and heat treatment (54.4 %), neural network (77.3 %), and optimization and prediction (58 %). Overall, energy production prediction and sustainable development are the main research progress of the field by introducing machine learning method. This research provides reference value of the future research on solid waste disposal.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"27 4","pages":"2699 - 2709"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A glance at solid waste disposal research progress using bibliometric analysis\",\"authors\":\"Lvhan Zhu,&nbsp;Zixiao Wu,&nbsp;Dongsheng Shen,&nbsp;Foquan Gu,&nbsp;Lulu Wang,&nbsp;Yuyang Long\",\"doi\":\"10.1007/s10163-025-02273-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid waste disposal is a complex field. Based on bibliometric analysis method, the research progress of solid waste disposal was evaluated with Web of Science core database, VOSviewer and Citespace. It shows that the strongest burst keywords, neural networks first appeared in 2008 and have been developing ever since. Then, the models and higher heating value appeared after 2016 and 2020, respectively. In 2008–2024, 70 % of the top journals and 30 % of the top paper related with energy production prediction. The hot spots are municipal solid waste (59.5 %), resource generation and heat treatment (54.4 %), neural network (77.3 %), and optimization and prediction (58 %). Overall, energy production prediction and sustainable development are the main research progress of the field by introducing machine learning method. This research provides reference value of the future research on solid waste disposal.</p></div>\",\"PeriodicalId\":643,\"journal\":{\"name\":\"Journal of Material Cycles and Waste Management\",\"volume\":\"27 4\",\"pages\":\"2699 - 2709\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Cycles and Waste Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10163-025-02273-w\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-025-02273-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固体废物处理是一个复杂的领域。基于文献计量分析方法,利用Web of Science核心数据库、VOSviewer和Citespace对固体废物处理的研究进展进行了评价。它表明,最强的突发关键词,神经网络首次出现在2008年,并一直在发展。2016年和2020年之后分别出现了模型和更高的热值。2008-2024年,70%的顶级期刊和30%的顶级论文与能源生产预测有关。城市生活垃圾(59.5%)、资源生成与热处理(54.4%)、神经网络(77.3%)和优化与预测(58%)是研究热点。总的来说,通过引入机器学习方法,能源生产预测和可持续发展是该领域的主要研究进展。本研究对今后固体废物处理的研究具有参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A glance at solid waste disposal research progress using bibliometric analysis

Solid waste disposal is a complex field. Based on bibliometric analysis method, the research progress of solid waste disposal was evaluated with Web of Science core database, VOSviewer and Citespace. It shows that the strongest burst keywords, neural networks first appeared in 2008 and have been developing ever since. Then, the models and higher heating value appeared after 2016 and 2020, respectively. In 2008–2024, 70 % of the top journals and 30 % of the top paper related with energy production prediction. The hot spots are municipal solid waste (59.5 %), resource generation and heat treatment (54.4 %), neural network (77.3 %), and optimization and prediction (58 %). Overall, energy production prediction and sustainable development are the main research progress of the field by introducing machine learning method. This research provides reference value of the future research on solid waste disposal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
205
审稿时长
4.8 months
期刊介绍: The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles. The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management. The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信