关于一类纯子超模和一类纯子模

Q2 Mathematics
Muna Jasim Mohammed Ali, Samira Naji Kadhim
{"title":"关于一类纯子超模和一类纯子模","authors":"Muna Jasim Mohammed Ali,&nbsp;Samira Naji Kadhim","doi":"10.1007/s11565-025-00602-3","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of a pure subhypermodule and so pure subhypermodule relative to subhypermodule are introducing. Some properties of these concepts have been studied. In this work the notion of a <span>\\(E_n\\)</span>-pure subact and so <span>\\(E_n\\)</span>-pure subact relative to subact have been introduced. Some properties of these concepts are studing. Prove that <i>X</i> is pure subhypermodule if and only if foreach finite sets <span>\\(\\{mi\\} \\in M, \\{ni\\} \\in X\\)</span> with <span>\\(\\{r_{ij}\\} \\in R\\)</span> and <span>\\(nj = \\sum _{i=1}^{k}{r_{ij}m_i}, j = 1, 2,\\ldots , l,\\)</span> there is a <span>\\(\\{ x_i \\} \\in X\\)</span> which is finite set, when <span>\\(nj -\\sum _{i=1}^{k}{r_{ij}x_i} \\in X \\cap K\\)</span> for each subhypermodule <i>K</i>, and <i>A</i> hypermodule M owns the pure intersection property if and only if <span>\\(\\left( zN \\cap zK\\right) =z\\left( \\ N\\cap K \\right) \\)</span> for each <span>\\(z \\in R\\)</span> and for all pure subhypermodules <i>N</i>, <i>K</i> in <i>M</i>. Also, prove that for act, If <i>M</i> owns the <span>\\(E_n\\)</span>-pure subact intersection property, then each <span>\\(E_n\\)</span>-pure subact in <i>M</i> has the <span>\\(E_n\\)</span>-pure subact intersection property, and Put <i>X</i> is <span>\\(E_n\\)</span>-pure subact in <i>M</i>. <i>M</i> has <span>\\(E_n\\)</span>-pure sub-act intersection property, if and only if, <span>\\(\\frac{M}{X}\\)</span> has <span>\\(E_n\\)</span>-pure subact intersection property.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some classes of pure subhypermodules and some classes of pure subacts over monoid\",\"authors\":\"Muna Jasim Mohammed Ali,&nbsp;Samira Naji Kadhim\",\"doi\":\"10.1007/s11565-025-00602-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of a pure subhypermodule and so pure subhypermodule relative to subhypermodule are introducing. Some properties of these concepts have been studied. In this work the notion of a <span>\\\\(E_n\\\\)</span>-pure subact and so <span>\\\\(E_n\\\\)</span>-pure subact relative to subact have been introduced. Some properties of these concepts are studing. Prove that <i>X</i> is pure subhypermodule if and only if foreach finite sets <span>\\\\(\\\\{mi\\\\} \\\\in M, \\\\{ni\\\\} \\\\in X\\\\)</span> with <span>\\\\(\\\\{r_{ij}\\\\} \\\\in R\\\\)</span> and <span>\\\\(nj = \\\\sum _{i=1}^{k}{r_{ij}m_i}, j = 1, 2,\\\\ldots , l,\\\\)</span> there is a <span>\\\\(\\\\{ x_i \\\\} \\\\in X\\\\)</span> which is finite set, when <span>\\\\(nj -\\\\sum _{i=1}^{k}{r_{ij}x_i} \\\\in X \\\\cap K\\\\)</span> for each subhypermodule <i>K</i>, and <i>A</i> hypermodule M owns the pure intersection property if and only if <span>\\\\(\\\\left( zN \\\\cap zK\\\\right) =z\\\\left( \\\\ N\\\\cap K \\\\right) \\\\)</span> for each <span>\\\\(z \\\\in R\\\\)</span> and for all pure subhypermodules <i>N</i>, <i>K</i> in <i>M</i>. Also, prove that for act, If <i>M</i> owns the <span>\\\\(E_n\\\\)</span>-pure subact intersection property, then each <span>\\\\(E_n\\\\)</span>-pure subact in <i>M</i> has the <span>\\\\(E_n\\\\)</span>-pure subact intersection property, and Put <i>X</i> is <span>\\\\(E_n\\\\)</span>-pure subact in <i>M</i>. <i>M</i> has <span>\\\\(E_n\\\\)</span>-pure sub-act intersection property, if and only if, <span>\\\\(\\\\frac{M}{X}\\\\)</span> has <span>\\\\(E_n\\\\)</span>-pure subact intersection property.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00602-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00602-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

介绍了纯子超模块的概念以及相对于子超模块的纯子超模块。研究了这些概念的一些性质。在这个作品中,a的概念 \(E_n\)-纯子,等等 \(E_n\)-纯subact相对于subact已经被引入。我们正在研究这些概念的一些性质。证明X是纯子超模当且仅当对于每个有限集 \(\{mi\} \in M, \{ni\} \in X\) 有 \(\{r_{ij}\} \in R\) 和 \(nj = \sum _{i=1}^{k}{r_{ij}m_i}, j = 1, 2,\ldots , l,\) 有一个 \(\{ x_i \} \in X\) 哪个是有限集,什么时候 \(nj -\sum _{i=1}^{k}{r_{ij}x_i} \in X \cap K\) 对于每个子超模K,且A超模M具有纯交性质当且仅当 \(\left( zN \cap zK\right) =z\left( \ N\cap K \right) \) 对于每一个 \(z \in R\) 对于M中的所有纯子超模N, K,还证明了对于act,如果M拥有 \(E_n\)-纯减法交性质,则各 \(E_n\)- M中的纯子式有 \(E_n\)-纯减法交性质,把X放在 \(E_n\)-纯粹的subact in M \(E_n\)-纯子行为交性质,当且仅当, \(\frac{M}{X}\) 有 \(E_n\)-纯减法交性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some classes of pure subhypermodules and some classes of pure subacts over monoid

The notion of a pure subhypermodule and so pure subhypermodule relative to subhypermodule are introducing. Some properties of these concepts have been studied. In this work the notion of a \(E_n\)-pure subact and so \(E_n\)-pure subact relative to subact have been introduced. Some properties of these concepts are studing. Prove that X is pure subhypermodule if and only if foreach finite sets \(\{mi\} \in M, \{ni\} \in X\) with \(\{r_{ij}\} \in R\) and \(nj = \sum _{i=1}^{k}{r_{ij}m_i}, j = 1, 2,\ldots , l,\) there is a \(\{ x_i \} \in X\) which is finite set, when \(nj -\sum _{i=1}^{k}{r_{ij}x_i} \in X \cap K\) for each subhypermodule K, and A hypermodule M owns the pure intersection property if and only if \(\left( zN \cap zK\right) =z\left( \ N\cap K \right) \) for each \(z \in R\) and for all pure subhypermodules N, K in M. Also, prove that for act, If M owns the \(E_n\)-pure subact intersection property, then each \(E_n\)-pure subact in M has the \(E_n\)-pure subact intersection property, and Put X is \(E_n\)-pure subact in M. M has \(E_n\)-pure sub-act intersection property, if and only if, \(\frac{M}{X}\) has \(E_n\)-pure subact intersection property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信