使用LangChain和NeMo护栏的道德医疗聊天机器人的集成框架

Govind Arun, Rohith Syam, Aiswarya Anil Nair, Sahaj Vaidya
{"title":"使用LangChain和NeMo护栏的道德医疗聊天机器人的集成框架","authors":"Govind Arun,&nbsp;Rohith Syam,&nbsp;Aiswarya Anil Nair,&nbsp;Sahaj Vaidya","doi":"10.1007/s43681-025-00696-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an ethical guardrail framework for developing a healthcare chatbot using large language models (LLMs) fine-tuned for conversational tasks, integrated with LangChain and NeMo Guardrails. The system ensures safe and polite interactions by defining custom conversational flows, enforcing ethical guidelines, and preventing responses to harmful or sensitive topics. We have demonstrated this guardrail system with a fine-tuned Mistral-7B-v0.1 model on healthcare data. LangChain offers a modular interface for seamless integration, while NeMo Guardrails enforces ethical constraints, ensuring responsible responses. This approach demonstrates how LLMs can be effectively utilized in sensitive fields like healthcare while ensuring safety and integrity.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"5 4","pages":"3981 - 3992"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated framework for ethical healthcare chatbots using LangChain and NeMo guardrails\",\"authors\":\"Govind Arun,&nbsp;Rohith Syam,&nbsp;Aiswarya Anil Nair,&nbsp;Sahaj Vaidya\",\"doi\":\"10.1007/s43681-025-00696-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an ethical guardrail framework for developing a healthcare chatbot using large language models (LLMs) fine-tuned for conversational tasks, integrated with LangChain and NeMo Guardrails. The system ensures safe and polite interactions by defining custom conversational flows, enforcing ethical guidelines, and preventing responses to harmful or sensitive topics. We have demonstrated this guardrail system with a fine-tuned Mistral-7B-v0.1 model on healthcare data. LangChain offers a modular interface for seamless integration, while NeMo Guardrails enforces ethical constraints, ensuring responsible responses. This approach demonstrates how LLMs can be effectively utilized in sensitive fields like healthcare while ensuring safety and integrity.</p></div>\",\"PeriodicalId\":72137,\"journal\":{\"name\":\"AI and ethics\",\"volume\":\"5 4\",\"pages\":\"3981 - 3992\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI and ethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43681-025-00696-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-025-00696-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个伦理护栏框架,用于开发医疗保健聊天机器人,该机器人使用大型语言模型(llm)对会话任务进行微调,并与LangChain和NeMo护栏集成。该系统通过定义自定义会话流程、执行道德准则和防止对有害或敏感话题的回应来确保安全和礼貌的交互。我们已经在医疗保健数据上使用经过微调的Mistral-7B-v0.1模型演示了该护栏系统。LangChain提供模块化接口,实现无缝集成,而NeMo guardails执行道德约束,确保负责任的响应。这种方法展示了法学硕士如何在医疗保健等敏感领域有效利用,同时确保安全性和完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An integrated framework for ethical healthcare chatbots using LangChain and NeMo guardrails

An integrated framework for ethical healthcare chatbots using LangChain and NeMo guardrails

This paper presents an ethical guardrail framework for developing a healthcare chatbot using large language models (LLMs) fine-tuned for conversational tasks, integrated with LangChain and NeMo Guardrails. The system ensures safe and polite interactions by defining custom conversational flows, enforcing ethical guidelines, and preventing responses to harmful or sensitive topics. We have demonstrated this guardrail system with a fine-tuned Mistral-7B-v0.1 model on healthcare data. LangChain offers a modular interface for seamless integration, while NeMo Guardrails enforces ethical constraints, ensuring responsible responses. This approach demonstrates how LLMs can be effectively utilized in sensitive fields like healthcare while ensuring safety and integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信