具有Choquard非线性的非局部Klein-Gordon方程的爆破

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Paulo Cesar Carrião,  André Vicente
{"title":"具有Choquard非线性的非局部Klein-Gordon方程的爆破","authors":"Paulo Cesar Carrião,&nbsp; André Vicente","doi":"10.1007/s00245-025-10280-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove a blow-up result for a nonlocal Klein-Gordon equation with a nonlocal Choquard nonlinearity. Additionally, we prove the instability of the ground state solution of the elliptic problem associated with the equation. To prove the blow-up and instability result, using the Pohozaev manifold, we give a new characterization of the ground state level. Finally, we also show a global existence result.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow Up for Nonlocal Klein-Gordon Equation with Choquard Nonlinearity\",\"authors\":\"Paulo Cesar Carrião,&nbsp; André Vicente\",\"doi\":\"10.1007/s00245-025-10280-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove a blow-up result for a nonlocal Klein-Gordon equation with a nonlocal Choquard nonlinearity. Additionally, we prove the instability of the ground state solution of the elliptic problem associated with the equation. To prove the blow-up and instability result, using the Pohozaev manifold, we give a new characterization of the ground state level. Finally, we also show a global existence result.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10280-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10280-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类具有非局部Choquard非线性的非局部Klein-Gordon方程的一个爆破结果。此外,我们还证明了与该方程相关的椭圆型问题基态解的不稳定性。为了证明爆炸和不稳定的结果,我们利用波霍扎耶夫流形给出了基态能级的一个新的表征。最后,给出了一个全局存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow Up for Nonlocal Klein-Gordon Equation with Choquard Nonlinearity

In this paper, we prove a blow-up result for a nonlocal Klein-Gordon equation with a nonlocal Choquard nonlinearity. Additionally, we prove the instability of the ground state solution of the elliptic problem associated with the equation. To prove the blow-up and instability result, using the Pohozaev manifold, we give a new characterization of the ground state level. Finally, we also show a global existence result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信