Zuchao Zhu, Jiabin Sun, Zhe Lin, Yanjun Jin, Yi Li
{"title":"用CFD-DEM方法表征两级提升泵中椭球粒子的运动","authors":"Zuchao Zhu, Jiabin Sun, Zhe Lin, Yanjun Jin, Yi Li","doi":"10.1007/s40571-024-00887-9","DOIUrl":null,"url":null,"abstract":"<div><p>The lifting pump is the core power equipment of the solid–liquid mixing system in deep-sea mining, but maintaining its stable operation while transporting particles is a major challenge for deep-sea mining hydro-transportation technology. This paper employs a CFD-DEM model suitable for the motion of ellipsoidal particles within a lifting pump and calculates the particle upstream surface at different inclination angles. Hydraulic transport of three types of ellipsoidal particles with aspect ratios of 1.0, 1.5 and 2.0 was simulated. An analysis of the motion characteristics of particles with different aspect ratios in a two-stage lifting pump found that an increase in aspect ratio decreased the overall velocity of the particles. When the aspect ratio increased, the aggregation effect of particles at the impeller inlet became more significant, and the conveying stability of the lifting pump decreased. Particles with high aspect ratios tend to clog the impeller vane inlets and create gyrations in the diffusion section of the pump. The peak velocity slip of particles in the diffusion section (pump outlet) decreases with an increasing aspect ratio. The results of the study will provide engineering theoretical support for the stable operation of lifting pumps.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 3","pages":"1579 - 1594"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the ellipsoidal particle motion in a two-stage lifting pump using CFD-DEM method\",\"authors\":\"Zuchao Zhu, Jiabin Sun, Zhe Lin, Yanjun Jin, Yi Li\",\"doi\":\"10.1007/s40571-024-00887-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lifting pump is the core power equipment of the solid–liquid mixing system in deep-sea mining, but maintaining its stable operation while transporting particles is a major challenge for deep-sea mining hydro-transportation technology. This paper employs a CFD-DEM model suitable for the motion of ellipsoidal particles within a lifting pump and calculates the particle upstream surface at different inclination angles. Hydraulic transport of three types of ellipsoidal particles with aspect ratios of 1.0, 1.5 and 2.0 was simulated. An analysis of the motion characteristics of particles with different aspect ratios in a two-stage lifting pump found that an increase in aspect ratio decreased the overall velocity of the particles. When the aspect ratio increased, the aggregation effect of particles at the impeller inlet became more significant, and the conveying stability of the lifting pump decreased. Particles with high aspect ratios tend to clog the impeller vane inlets and create gyrations in the diffusion section of the pump. The peak velocity slip of particles in the diffusion section (pump outlet) decreases with an increasing aspect ratio. The results of the study will provide engineering theoretical support for the stable operation of lifting pumps.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"12 3\",\"pages\":\"1579 - 1594\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-024-00887-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00887-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Characterization of the ellipsoidal particle motion in a two-stage lifting pump using CFD-DEM method
The lifting pump is the core power equipment of the solid–liquid mixing system in deep-sea mining, but maintaining its stable operation while transporting particles is a major challenge for deep-sea mining hydro-transportation technology. This paper employs a CFD-DEM model suitable for the motion of ellipsoidal particles within a lifting pump and calculates the particle upstream surface at different inclination angles. Hydraulic transport of three types of ellipsoidal particles with aspect ratios of 1.0, 1.5 and 2.0 was simulated. An analysis of the motion characteristics of particles with different aspect ratios in a two-stage lifting pump found that an increase in aspect ratio decreased the overall velocity of the particles. When the aspect ratio increased, the aggregation effect of particles at the impeller inlet became more significant, and the conveying stability of the lifting pump decreased. Particles with high aspect ratios tend to clog the impeller vane inlets and create gyrations in the diffusion section of the pump. The peak velocity slip of particles in the diffusion section (pump outlet) decreases with an increasing aspect ratio. The results of the study will provide engineering theoretical support for the stable operation of lifting pumps.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.