IF 0.7 Q2 MATHEMATICS
Florian Luca, Dimbinaina Ralaivaosaona, Jorge Jiménez Urroz
{"title":"On pseudoprime RSA moduli","authors":"Florian Luca,&nbsp;Dimbinaina Ralaivaosaona,&nbsp;Jorge Jiménez Urroz","doi":"10.1007/s13370-025-01338-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 2010, Dieulefait and Urroz considered the notion of malleability of an RSA modulus. They proved that, given some information on the factors of numbers coprime to <i>n</i>, where <i>n</i> is an RSA modulus, there exists an algorithm that finds a proper factor of <i>n</i> in time <span>\\(O(\\log n)\\)</span>. As a particular case of their algorithm, just some knowledge of the factors of <span>\\(2^n\\pm 1\\)</span> is enough to factor <i>n</i> except possibly when <i>n</i> is a base-2 pseudoprime. They went on to prove that the set of these exceptional RSA moduli with prime factors between <i>z</i> and 2<i>z</i> has size at most <span>\\(O(z^2/(\\log z)^3)\\)</span>. In the present paper, we improve this bound significantly and show that the counting function for these RSA moduli is bounded above by <span>\\(O(z^{8/5}/(\\log z)^2)\\)</span>. In addition, as a related problem, we prove an upper bound of <span>\\(O(z^{4/5}/(\\log z)^{2/5})\\)</span> for the number of base-2 pseudoprimes up to <i>z</i> that are products of two primes.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01338-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01338-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2010年,Dieulefait和Urroz考虑了RSA模的延展性的概念。他们证明了,给定一些关于数的素数因子的信息,其中n是RSA模数,存在一种算法可以在时间上找到n的合适因子\(O(\log n)\)。作为他们算法的一个特例,只要知道\(2^n\pm 1\)的因子就足以分解n除非n是一个以2为基底的伪素数。他们继续证明这些素数因子在z和2z之间的特殊RSA模的集合的大小最多为\(O(z^2/(\log z)^3)\)。在本文中,我们显著地改进了这个界,并证明了这些RSA模的计数函数有\(O(z^{8/5}/(\log z)^2)\)的上界。此外,作为一个相关问题,我们证明了两个素数乘积的以2为基数的伪素数的个数的上界\(O(z^{4/5}/(\log z)^{2/5})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pseudoprime RSA moduli

In 2010, Dieulefait and Urroz considered the notion of malleability of an RSA modulus. They proved that, given some information on the factors of numbers coprime to n, where n is an RSA modulus, there exists an algorithm that finds a proper factor of n in time \(O(\log n)\). As a particular case of their algorithm, just some knowledge of the factors of \(2^n\pm 1\) is enough to factor n except possibly when n is a base-2 pseudoprime. They went on to prove that the set of these exceptional RSA moduli with prime factors between z and 2z has size at most \(O(z^2/(\log z)^3)\). In the present paper, we improve this bound significantly and show that the counting function for these RSA moduli is bounded above by \(O(z^{8/5}/(\log z)^2)\). In addition, as a related problem, we prove an upper bound of \(O(z^{4/5}/(\log z)^{2/5})\) for the number of base-2 pseudoprimes up to z that are products of two primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信