在一个唯一的二维积分算子上对所有保持方向的线性变换齐次

IF 1.6 3区 数学 Q1 MATHEMATICS
Zhirayr Avetisyan, Alexey Karapetyants, Adolf Mirotin
{"title":"在一个唯一的二维积分算子上对所有保持方向的线性变换齐次","authors":"Zhirayr Avetisyan,&nbsp;Alexey Karapetyants,&nbsp;Adolf Mirotin","doi":"10.1007/s13324-025-01104-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a two-dimensional operator with an antisymmetric integral kernel, recently introduced by Z. Avetisyan and A. Karapetyants in connection to the study of general homogeneous operators. This is the unique two-dimensional operator that has an antisymmetric kernel homogeneous with respect to all orientation-preserving linear transformations of the plane. It is shown that the operator under consideration interacts naturally, both in Cartesian and polar coordinates, with projective tensor products of some classical functional spaces, such as Lebesgue, Hardy, and Hölder spaces; conditions for their boundedness as operators acting from these spaces to Banach lattices of measurable functions and estimates of their norms are given.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a unique two-dimensional integral operator homogeneous with respect to all orientation preserving linear transformations\",\"authors\":\"Zhirayr Avetisyan,&nbsp;Alexey Karapetyants,&nbsp;Adolf Mirotin\",\"doi\":\"10.1007/s13324-025-01104-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a two-dimensional operator with an antisymmetric integral kernel, recently introduced by Z. Avetisyan and A. Karapetyants in connection to the study of general homogeneous operators. This is the unique two-dimensional operator that has an antisymmetric kernel homogeneous with respect to all orientation-preserving linear transformations of the plane. It is shown that the operator under consideration interacts naturally, both in Cartesian and polar coordinates, with projective tensor products of some classical functional spaces, such as Lebesgue, Hardy, and Hölder spaces; conditions for their boundedness as operators acting from these spaces to Banach lattices of measurable functions and estimates of their norms are given.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01104-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01104-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个具有反对称积分核的二维算子,它是由Z. Avetisyan和a . Karapetyants在研究一般齐次算子时引入的。这是唯一的二维算子它对于平面上所有保持方向的线性变换都有一个反对称的齐次核。结果表明,所考虑的算子在笛卡尔坐标和极坐标下都能与一些经典泛函空间(如Lebesgue、Hardy和Hölder空间)的射影张量积自然地相互作用;给出了它们作为从这些空间作用于可测函数的巴拿赫格的算子的有界性条件及其范数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a unique two-dimensional integral operator homogeneous with respect to all orientation preserving linear transformations

In this paper, we consider a two-dimensional operator with an antisymmetric integral kernel, recently introduced by Z. Avetisyan and A. Karapetyants in connection to the study of general homogeneous operators. This is the unique two-dimensional operator that has an antisymmetric kernel homogeneous with respect to all orientation-preserving linear transformations of the plane. It is shown that the operator under consideration interacts naturally, both in Cartesian and polar coordinates, with projective tensor products of some classical functional spaces, such as Lebesgue, Hardy, and Hölder spaces; conditions for their boundedness as operators acting from these spaces to Banach lattices of measurable functions and estimates of their norms are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信