Rodrigo Reis Amaral, Herbert Martins Gomes, Jorge Luis Palomino Tamayo
{"title":"基于多材料拓扑优化的双面支撑结构多载荷优化设计","authors":"Rodrigo Reis Amaral, Herbert Martins Gomes, Jorge Luis Palomino Tamayo","doi":"10.1007/s10999-025-09760-w","DOIUrl":null,"url":null,"abstract":"<div><p>Designing structures often relies on the experience of engineers, involving an iterative process to achieve a balance between cost-effectiveness, durability, reliability, and to fulfill the required specifications. In this context, this paper introduces a novel multi-material topology optimization approach for reinforced concrete structures with D regions, considering multiple load cases during the optimization process. The methodology adopts a two-loop approach. The first loop minimizes the structure's compliance to reduce weight within a given material volume constraint. The second loop iteratively replaces concrete exceeding the Ottosen four-parameter failure surface by steel, ensuring a safe stress level under a stress constraint. The required steel area is determined based on the equivalent principal forces in finite elements classified as steel in the resulting topology from the multiple load cases. Finally, a nonlinear comparative analysis considering both material and geometric nonlinearity of the optimized and reference structures is performed using Simulia Abaqus. This analysis evaluates the crack pattern, stress distribution, and the yielding of the reinforcement up to the ultimate load of the structure. The outcomes demonstrate lightweight designs meeting the required structural performance standards.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"21 3","pages":"641 - 665"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized strut-and-tie design for double-sided corbels using multi-material topology optimization under multiple load cases\",\"authors\":\"Rodrigo Reis Amaral, Herbert Martins Gomes, Jorge Luis Palomino Tamayo\",\"doi\":\"10.1007/s10999-025-09760-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing structures often relies on the experience of engineers, involving an iterative process to achieve a balance between cost-effectiveness, durability, reliability, and to fulfill the required specifications. In this context, this paper introduces a novel multi-material topology optimization approach for reinforced concrete structures with D regions, considering multiple load cases during the optimization process. The methodology adopts a two-loop approach. The first loop minimizes the structure's compliance to reduce weight within a given material volume constraint. The second loop iteratively replaces concrete exceeding the Ottosen four-parameter failure surface by steel, ensuring a safe stress level under a stress constraint. The required steel area is determined based on the equivalent principal forces in finite elements classified as steel in the resulting topology from the multiple load cases. Finally, a nonlinear comparative analysis considering both material and geometric nonlinearity of the optimized and reference structures is performed using Simulia Abaqus. This analysis evaluates the crack pattern, stress distribution, and the yielding of the reinforcement up to the ultimate load of the structure. The outcomes demonstrate lightweight designs meeting the required structural performance standards.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"21 3\",\"pages\":\"641 - 665\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-025-09760-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-025-09760-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Optimized strut-and-tie design for double-sided corbels using multi-material topology optimization under multiple load cases
Designing structures often relies on the experience of engineers, involving an iterative process to achieve a balance between cost-effectiveness, durability, reliability, and to fulfill the required specifications. In this context, this paper introduces a novel multi-material topology optimization approach for reinforced concrete structures with D regions, considering multiple load cases during the optimization process. The methodology adopts a two-loop approach. The first loop minimizes the structure's compliance to reduce weight within a given material volume constraint. The second loop iteratively replaces concrete exceeding the Ottosen four-parameter failure surface by steel, ensuring a safe stress level under a stress constraint. The required steel area is determined based on the equivalent principal forces in finite elements classified as steel in the resulting topology from the multiple load cases. Finally, a nonlinear comparative analysis considering both material and geometric nonlinearity of the optimized and reference structures is performed using Simulia Abaqus. This analysis evaluates the crack pattern, stress distribution, and the yielding of the reinforcement up to the ultimate load of the structure. The outcomes demonstrate lightweight designs meeting the required structural performance standards.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.