混合ANN-GPR机器学习替代功能材料的动态行为

Q2 Engineering
Mallikarjun Muttappa Gadikar, Aman Garg, Vaishali Sahu
{"title":"混合ANN-GPR机器学习替代功能材料的动态行为","authors":"Mallikarjun Muttappa Gadikar,&nbsp;Aman Garg,&nbsp;Vaishali Sahu","doi":"10.1007/s42107-025-01393-w","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling bidirectional functionally graded (BDFG) plates is challenging due to the continuous spatial variation of material properties. This study presents a novel machine learning (ML)-assisted isogeometric analysis (IGA) framework to predict the free vibration response of BDFG plates efficiently. The training dataset is generated using zigzag theory within an IGA framework, capturing high-fidelity structural behavior. Three regression-based ML algorithms—Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and hybrid models (GA-optimized ANN and Bayesian-optimized GPR)—are employed. Additionally, a novel hybrid ANN-GPR model is proposed, where ANN extracts high-level features from raw input data, and GPR performs regression with uncertainty quantification. Further, an ANN-learned kernel replaces the conventional GPR kernel, enabling latent-space transformation for enhanced predictive performance. The proposed hybrid approach demonstrates superior computational efficiency and accuracy compared to standalone and optimized ML models, making it a robust tool for the analysis of BDFG structures.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 9","pages":"3725 - 3742"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid ANN-GPR machine learning surrogate for dynamic behavior of functional materials\",\"authors\":\"Mallikarjun Muttappa Gadikar,&nbsp;Aman Garg,&nbsp;Vaishali Sahu\",\"doi\":\"10.1007/s42107-025-01393-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling bidirectional functionally graded (BDFG) plates is challenging due to the continuous spatial variation of material properties. This study presents a novel machine learning (ML)-assisted isogeometric analysis (IGA) framework to predict the free vibration response of BDFG plates efficiently. The training dataset is generated using zigzag theory within an IGA framework, capturing high-fidelity structural behavior. Three regression-based ML algorithms—Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and hybrid models (GA-optimized ANN and Bayesian-optimized GPR)—are employed. Additionally, a novel hybrid ANN-GPR model is proposed, where ANN extracts high-level features from raw input data, and GPR performs regression with uncertainty quantification. Further, an ANN-learned kernel replaces the conventional GPR kernel, enabling latent-space transformation for enhanced predictive performance. The proposed hybrid approach demonstrates superior computational efficiency and accuracy compared to standalone and optimized ML models, making it a robust tool for the analysis of BDFG structures.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 9\",\"pages\":\"3725 - 3742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-025-01393-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01393-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于材料性能的连续空间变化,双向功能梯度板的建模具有挑战性。本研究提出了一种新的机器学习(ML)辅助等几何分析(IGA)框架来有效预测BDFG板的自由振动响应。训练数据集是在IGA框架内使用之字形理论生成的,捕获高保真的结构行为。采用了三种基于回归的机器学习算法——高斯过程回归(GPR)、人工神经网络(ANN)和混合模型(ga优化的ANN和贝叶斯优化的GPR)。此外,提出了一种新的人工神经网络-探地雷达混合模型,其中人工神经网络从原始输入数据中提取高级特征,探地雷达进行不确定性量化回归。此外,人工神经网络学习的核取代了传统的GPR核,实现了潜在空间转换,以增强预测性能。与独立和优化的ML模型相比,所提出的混合方法具有更高的计算效率和准确性,使其成为分析BDFG结构的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid ANN-GPR machine learning surrogate for dynamic behavior of functional materials

Modeling bidirectional functionally graded (BDFG) plates is challenging due to the continuous spatial variation of material properties. This study presents a novel machine learning (ML)-assisted isogeometric analysis (IGA) framework to predict the free vibration response of BDFG plates efficiently. The training dataset is generated using zigzag theory within an IGA framework, capturing high-fidelity structural behavior. Three regression-based ML algorithms—Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and hybrid models (GA-optimized ANN and Bayesian-optimized GPR)—are employed. Additionally, a novel hybrid ANN-GPR model is proposed, where ANN extracts high-level features from raw input data, and GPR performs regression with uncertainty quantification. Further, an ANN-learned kernel replaces the conventional GPR kernel, enabling latent-space transformation for enhanced predictive performance. The proposed hybrid approach demonstrates superior computational efficiency and accuracy compared to standalone and optimized ML models, making it a robust tool for the analysis of BDFG structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信