利用大型语言模型对基础设施状态数据进行语义丰富:GPT和Llama模型的比较研究

Lea Höltgen, Sven Zentgraf, Philipp Hagedorn, Markus König
{"title":"利用大型语言模型对基础设施状态数据进行语义丰富:GPT和Llama模型的比较研究","authors":"Lea Höltgen,&nbsp;Sven Zentgraf,&nbsp;Philipp Hagedorn,&nbsp;Markus König","doi":"10.1007/s43503-025-00055-9","DOIUrl":null,"url":null,"abstract":"<div><p>Relational databases containing construction-related data are widely used in the Architecture, Engineering, and Construction (AEC) industry to manage diverse datasets, including project management and building-specific information. This study explores the use of large language models (LLMs) to convert construction data from relational databases into formal semantic representations, such as the resource description framework (RDF). Transforming this data into RDF-encoded knowledge graphs enhances interoperability and enables advanced querying capabilities. However, existing methods like R2RML and Direct Mapping face significant challenges, including the need for domain expertise and scalability issues. LLMs, with their advanced natural language processing capabilities, offer a promising solution by automating the conversion process, reducing the reliance on expert knowledge, and semantically enriching data through appropriate ontologies. This paper evaluates the potential of four LLMs (two versions of GPT and Llama) to enhance data enrichment workflows in the construction industry and examines the limitations of applying these models to large-scale datasets.</p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00055-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Utilizing large language models for semantic enrichment of infrastructure condition data: a comparative study of GPT and Llama models\",\"authors\":\"Lea Höltgen,&nbsp;Sven Zentgraf,&nbsp;Philipp Hagedorn,&nbsp;Markus König\",\"doi\":\"10.1007/s43503-025-00055-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Relational databases containing construction-related data are widely used in the Architecture, Engineering, and Construction (AEC) industry to manage diverse datasets, including project management and building-specific information. This study explores the use of large language models (LLMs) to convert construction data from relational databases into formal semantic representations, such as the resource description framework (RDF). Transforming this data into RDF-encoded knowledge graphs enhances interoperability and enables advanced querying capabilities. However, existing methods like R2RML and Direct Mapping face significant challenges, including the need for domain expertise and scalability issues. LLMs, with their advanced natural language processing capabilities, offer a promising solution by automating the conversion process, reducing the reliance on expert knowledge, and semantically enriching data through appropriate ontologies. This paper evaluates the potential of four LLMs (two versions of GPT and Llama) to enhance data enrichment workflows in the construction industry and examines the limitations of applying these models to large-scale datasets.</p></div>\",\"PeriodicalId\":72138,\"journal\":{\"name\":\"AI in civil engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43503-025-00055-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI in civil engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43503-025-00055-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00055-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

包含建筑相关数据的关系数据库广泛应用于建筑、工程和施工(AEC)行业,用于管理各种数据集,包括项目管理和建筑特定信息。本研究探讨了使用大型语言模型(llm)将关系数据库中的构造数据转换为正式的语义表示,例如资源描述框架(RDF)。将这些数据转换为rdf编码的知识图可以增强互操作性,并支持高级查询功能。然而,像R2RML和Direct Mapping这样的现有方法面临着巨大的挑战,包括对领域专业知识的需求和可扩展性问题。llm具有先进的自然语言处理能力,通过自动化转换过程,减少对专家知识的依赖,并通过适当的本体丰富数据的语义,提供了一个有前途的解决方案。本文评估了四个llm (GPT和Llama的两个版本)在增强建筑行业数据丰富工作流程方面的潜力,并检查了将这些模型应用于大规模数据集的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing large language models for semantic enrichment of infrastructure condition data: a comparative study of GPT and Llama models

Relational databases containing construction-related data are widely used in the Architecture, Engineering, and Construction (AEC) industry to manage diverse datasets, including project management and building-specific information. This study explores the use of large language models (LLMs) to convert construction data from relational databases into formal semantic representations, such as the resource description framework (RDF). Transforming this data into RDF-encoded knowledge graphs enhances interoperability and enables advanced querying capabilities. However, existing methods like R2RML and Direct Mapping face significant challenges, including the need for domain expertise and scalability issues. LLMs, with their advanced natural language processing capabilities, offer a promising solution by automating the conversion process, reducing the reliance on expert knowledge, and semantically enriching data through appropriate ontologies. This paper evaluates the potential of four LLMs (two versions of GPT and Llama) to enhance data enrichment workflows in the construction industry and examines the limitations of applying these models to large-scale datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信