机器学习在Baikal-GVD中的应用现状

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR
I. Kharuk, G. Plotnikov, A. Matseiko
{"title":"机器学习在Baikal-GVD中的应用现状","authors":"I. Kharuk,&nbsp;G. Plotnikov,&nbsp;A. Matseiko","doi":"10.1134/S1063778825700449","DOIUrl":null,"url":null,"abstract":"<p>In this report we present machine-learning-based approaches for analyzing Baikal-GVD data. The framework addresses five key challenges in neutrino detection: suppression of air-shower-induced events, rejecting noise activations of optical modules, classification of track and cascade-like hits, reconstruction of neutrino incoming angles, and energy estimation. For each task, we discuss the physical motivation and demonstrate the performance metrics. We introduce a data processing pipeline that incorporates these neural networks and discuss how it can improve both the accuracy and efficiency of data analysis in the Baikal-GVD experiment.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"88 2","pages":"254 - 259"},"PeriodicalIF":0.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning Applications in Baikal-GVD: Current Status\",\"authors\":\"I. Kharuk,&nbsp;G. Plotnikov,&nbsp;A. Matseiko\",\"doi\":\"10.1134/S1063778825700449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this report we present machine-learning-based approaches for analyzing Baikal-GVD data. The framework addresses five key challenges in neutrino detection: suppression of air-shower-induced events, rejecting noise activations of optical modules, classification of track and cascade-like hits, reconstruction of neutrino incoming angles, and energy estimation. For each task, we discuss the physical motivation and demonstrate the performance metrics. We introduce a data processing pipeline that incorporates these neural networks and discuss how it can improve both the accuracy and efficiency of data analysis in the Baikal-GVD experiment.</p>\",\"PeriodicalId\":728,\"journal\":{\"name\":\"Physics of Atomic Nuclei\",\"volume\":\"88 2\",\"pages\":\"254 - 259\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Atomic Nuclei\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063778825700449\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778825700449","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在本报告中,我们提出了基于机器学习的方法来分析贝加尔湖gvd数据。该框架解决了中微子探测中的五个关键挑战:抑制空气阵雨引起的事件,拒绝光模块的噪声激活,轨道和级联式命中的分类,中微子入射角度的重建以及能量估计。对于每个任务,我们讨论了物理动机并演示了性能指标。我们介绍了一个包含这些神经网络的数据处理管道,并讨论了它如何在贝加尔- gvd实验中提高数据分析的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-Learning Applications in Baikal-GVD: Current Status

Machine-Learning Applications in Baikal-GVD: Current Status

In this report we present machine-learning-based approaches for analyzing Baikal-GVD data. The framework addresses five key challenges in neutrino detection: suppression of air-shower-induced events, rejecting noise activations of optical modules, classification of track and cascade-like hits, reconstruction of neutrino incoming angles, and energy estimation. For each task, we discuss the physical motivation and demonstrate the performance metrics. We introduce a data processing pipeline that incorporates these neural networks and discuss how it can improve both the accuracy and efficiency of data analysis in the Baikal-GVD experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信