{"title":"不同热导率下生物组织热力学响应的有限元分析","authors":"A Hobiny, I Abbas, A El-Bary","doi":"10.1007/s12648-025-03556-6","DOIUrl":null,"url":null,"abstract":"<div><p>This work offers numerical solutions within the framework of bio-thermoelastic model, addressing the bioheat transfer in living tissues due to laser irradiations, considering varying thermal conductivity. To carry out thermal therapy procedures efficiently, it is crucial to have a comprehensive understanding of both the thermal transmission mechanism and the subsequent mechanical and thermal interactions within the living tissues of the patient. Evaluating thermal injuries to the tissue requires assessing the extent of denatured proteins, employing the Arrhenius relation. Given the nonlinearity of the fundamental formulations, the finite element technique is employed to address and solve this problem. Graphical depictions of the numerical result portray the change in temperature, displacement, stress, and thermal damages in response to variations in thermal conductivity and thermal relaxation time. The findings obtained using the finite element approach are additionally compared with data from a pre-existing experimental data, confirming the numerical calculation accuracy through cross-referencing.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 9","pages":"3197 - 3206"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis of thermomechanical response in biological tissues under varying thermal conductivity\",\"authors\":\"A Hobiny, I Abbas, A El-Bary\",\"doi\":\"10.1007/s12648-025-03556-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work offers numerical solutions within the framework of bio-thermoelastic model, addressing the bioheat transfer in living tissues due to laser irradiations, considering varying thermal conductivity. To carry out thermal therapy procedures efficiently, it is crucial to have a comprehensive understanding of both the thermal transmission mechanism and the subsequent mechanical and thermal interactions within the living tissues of the patient. Evaluating thermal injuries to the tissue requires assessing the extent of denatured proteins, employing the Arrhenius relation. Given the nonlinearity of the fundamental formulations, the finite element technique is employed to address and solve this problem. Graphical depictions of the numerical result portray the change in temperature, displacement, stress, and thermal damages in response to variations in thermal conductivity and thermal relaxation time. The findings obtained using the finite element approach are additionally compared with data from a pre-existing experimental data, confirming the numerical calculation accuracy through cross-referencing.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"99 9\",\"pages\":\"3197 - 3206\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-025-03556-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03556-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite element analysis of thermomechanical response in biological tissues under varying thermal conductivity
This work offers numerical solutions within the framework of bio-thermoelastic model, addressing the bioheat transfer in living tissues due to laser irradiations, considering varying thermal conductivity. To carry out thermal therapy procedures efficiently, it is crucial to have a comprehensive understanding of both the thermal transmission mechanism and the subsequent mechanical and thermal interactions within the living tissues of the patient. Evaluating thermal injuries to the tissue requires assessing the extent of denatured proteins, employing the Arrhenius relation. Given the nonlinearity of the fundamental formulations, the finite element technique is employed to address and solve this problem. Graphical depictions of the numerical result portray the change in temperature, displacement, stress, and thermal damages in response to variations in thermal conductivity and thermal relaxation time. The findings obtained using the finite element approach are additionally compared with data from a pre-existing experimental data, confirming the numerical calculation accuracy through cross-referencing.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.