珀尔森-斯特帕诺夫定理

IF 1.6 3区 数学 Q1 MATHEMATICS
Amiran Gogatishvili, Luboš Pick, Hana Turčinová, Tuğçe Ünver
{"title":"珀尔森-斯特帕诺夫定理","authors":"Amiran Gogatishvili,&nbsp;Luboš Pick,&nbsp;Hana Turčinová,&nbsp;Tuğçe Ünver","doi":"10.1007/s13324-025-01102-5","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new proof of the result of L.-E. Persson and V.D. Stepanov [24, Theorems 1 and 3], which provides a characterization of a Hardy integral inequality involving two weights, and which can be applied to an effective treatment of the geometric mean operator. Our approach enables us to extend their result to the full range of parameters, in particular involving the critical case <span>\\(p=1\\)</span>, which was excluded in the original work. Our proof avoids all duality steps and discretization techniques and uses solely elementary means.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01102-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The Persson–Stepanov theorem revisited\",\"authors\":\"Amiran Gogatishvili,&nbsp;Luboš Pick,&nbsp;Hana Turčinová,&nbsp;Tuğçe Ünver\",\"doi\":\"10.1007/s13324-025-01102-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new proof of the result of L.-E. Persson and V.D. Stepanov [24, Theorems 1 and 3], which provides a characterization of a Hardy integral inequality involving two weights, and which can be applied to an effective treatment of the geometric mean operator. Our approach enables us to extend their result to the full range of parameters, in particular involving the critical case <span>\\\\(p=1\\\\)</span>, which was excluded in the original work. Our proof avoids all duality steps and discretization techniques and uses solely elementary means.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01102-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01102-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01102-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了l - e结果的一个新的证明。Persson和V.D. Stepanov[24,定理1和定理3],它提供了涉及两个权重的Hardy积分不等式的表征,并且可以应用于几何平均算子的有效处理。我们的方法使我们能够将他们的结果扩展到所有参数范围,特别是涉及临界情况\(p=1\),这在原始工作中被排除在外。我们的证明避免了所有的对偶步骤和离散化技术,只使用了基本的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Persson–Stepanov theorem revisited

We develop a new proof of the result of L.-E. Persson and V.D. Stepanov [24, Theorems 1 and 3], which provides a characterization of a Hardy integral inequality involving two weights, and which can be applied to an effective treatment of the geometric mean operator. Our approach enables us to extend their result to the full range of parameters, in particular involving the critical case \(p=1\), which was excluded in the original work. Our proof avoids all duality steps and discretization techniques and uses solely elementary means.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信