Morrey空间上的广义分数积分算子及其双preduals

IF 1.6 3区 数学 Q1 MATHEMATICS
Satoshi Yamaguchi, Eiichi Nakai
{"title":"Morrey空间上的广义分数积分算子及其双preduals","authors":"Satoshi Yamaguchi,&nbsp;Eiichi Nakai","doi":"10.1007/s13324-025-01091-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove the boundedness of the generalized fractional integral operator <span>\\(I_{\\rho }\\)</span> on generalized Morrey spaces with variable growth condition, which is an improvement of previous results, and then, we establish the boundedness of <span>\\(I_{\\rho }\\)</span> on their bi-preduals. We also prove the boundedness of <span>\\(I_{\\rho }\\)</span> on their preduals by the duality.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized fractional integral operators on Morrey spaces and their bi-preduals\",\"authors\":\"Satoshi Yamaguchi,&nbsp;Eiichi Nakai\",\"doi\":\"10.1007/s13324-025-01091-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove the boundedness of the generalized fractional integral operator <span>\\\\(I_{\\\\rho }\\\\)</span> on generalized Morrey spaces with variable growth condition, which is an improvement of previous results, and then, we establish the boundedness of <span>\\\\(I_{\\\\rho }\\\\)</span> on their bi-preduals. We also prove the boundedness of <span>\\\\(I_{\\\\rho }\\\\)</span> on their preduals by the duality.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01091-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01091-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了广义分数阶积分算子\(I_{\rho }\)在变生长条件广义Morrey空间上的有界性,这是对以往结果的改进,并在此基础上建立了\(I_{\rho }\)在广义Morrey空间的双前偶上的有界性。并利用对偶证明了\(I_{\rho }\)在它们的前对偶上的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized fractional integral operators on Morrey spaces and their bi-preduals

In this paper we prove the boundedness of the generalized fractional integral operator \(I_{\rho }\) on generalized Morrey spaces with variable growth condition, which is an improvement of previous results, and then, we establish the boundedness of \(I_{\rho }\) on their bi-preduals. We also prove the boundedness of \(I_{\rho }\) on their preduals by the duality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信