静止时空上阻尼磁波动方程的局部能量衰减

IF 1.6 3区 数学 Q1 MATHEMATICS
Collin Kofroth
{"title":"静止时空上阻尼磁波动方程的局部能量衰减","authors":"Collin Kofroth","doi":"10.1007/s13324-025-01115-0","DOIUrl":null,"url":null,"abstract":"<div><p>We establish local energy decay for damped magnetic wave equations on stationary, asymptotically flat space-times subject to the geometric control condition. More specifically, we allow for the addition of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and resonances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and Tataru and combine with a generalization of prior work by the present author to extend the latter work and establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that the damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within the region where the metric perturbation from that of Minkowski space is permitted to be large. We also obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure of the argument more cohesive, we contextualize the present work within the requisite existing theory.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Local Energy Decay for Damped Magnetic Wave Equations on Stationary Space-Times\",\"authors\":\"Collin Kofroth\",\"doi\":\"10.1007/s13324-025-01115-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish local energy decay for damped magnetic wave equations on stationary, asymptotically flat space-times subject to the geometric control condition. More specifically, we allow for the addition of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and resonances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and Tataru and combine with a generalization of prior work by the present author to extend the latter work and establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that the damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within the region where the metric perturbation from that of Minkowski space is permitted to be large. We also obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure of the argument more cohesive, we contextualize the present work within the requisite existing theory.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01115-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01115-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在几何控制条件下,建立了平稳、渐近平坦时空上阻尼磁波动方程的局部能量衰减。更具体地说,我们允许添加与时间无关的磁势和标量势,它们会对能量矫顽力产生负面影响,并可能增加笨拙的光谱效应。通过断言下半平面上不存在特征值和实线上不存在共振,我们能够应用Metcalfe, Sterbenz和Tataru工作中的谱理论,并结合本文作者先前工作的推广,扩展后者的工作,并在一个额外的对称性假设下建立局部能量衰减。也就是说,在允许Minkowski空间的度量扰动较大的区域内,我们假设阻尼项是阻尼波算子的偏伴随部分的占主导地位的主项。如果我们不禁止非零实共振,我们也得到了能量二分法。为了使论点的结构更有凝聚力,我们将当前的工作置于必要的现有理论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Local Energy Decay for Damped Magnetic Wave Equations on Stationary Space-Times

We establish local energy decay for damped magnetic wave equations on stationary, asymptotically flat space-times subject to the geometric control condition. More specifically, we allow for the addition of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and resonances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and Tataru and combine with a generalization of prior work by the present author to extend the latter work and establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that the damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within the region where the metric perturbation from that of Minkowski space is permitted to be large. We also obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure of the argument more cohesive, we contextualize the present work within the requisite existing theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信