Finsler流形上yamabe型方程的hamilton型梯度估计

IF 0.7 Q2 MATHEMATICS
Shansong Huang, Xiang Liu, Bin Shen, Yuhan Zhu
{"title":"Finsler流形上yamabe型方程的hamilton型梯度估计","authors":"Shansong Huang,&nbsp;Xiang Liu,&nbsp;Bin Shen,&nbsp;Yuhan Zhu","doi":"10.1007/s13370-025-01355-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the positive solution to the Finslerian Yamabe-type equation </p><div><div><span>$$u_t=\\Delta ^{\\nabla u} u+au+bu^\\alpha .$$</span></div></div><p>We give the Hamilton-type gradient estimate on compact Finsler metric measure spaces with the celebrated <span>\\(CD(-K,N)\\)</span> condition. Besides, on forward complete noncompact Finsler metric measure spaces with the mixed weighted Ricci curvature bounded below, the new comparison theorem established by the third author (Shen in Operators on nonlinear metric measure spaces I: A new Laplacian comparison theorem on Finsler manifolds and a traditional approach to gradient estimates of Finslerian Schrödinger equation arXiv:2312.06617v2 [math.DG], 2024) allows us to give the gradient estimate under the assumption of certain bounded non-Riemannian tensors. Finally, we prove the Liouville-type theorem and the Harnack inequality for such solutions as applications.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamilton-type gradient estimates for Yamabe-type equations on Finsler manifolds\",\"authors\":\"Shansong Huang,&nbsp;Xiang Liu,&nbsp;Bin Shen,&nbsp;Yuhan Zhu\",\"doi\":\"10.1007/s13370-025-01355-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the positive solution to the Finslerian Yamabe-type equation </p><div><div><span>$$u_t=\\\\Delta ^{\\\\nabla u} u+au+bu^\\\\alpha .$$</span></div></div><p>We give the Hamilton-type gradient estimate on compact Finsler metric measure spaces with the celebrated <span>\\\\(CD(-K,N)\\\\)</span> condition. Besides, on forward complete noncompact Finsler metric measure spaces with the mixed weighted Ricci curvature bounded below, the new comparison theorem established by the third author (Shen in Operators on nonlinear metric measure spaces I: A new Laplacian comparison theorem on Finsler manifolds and a traditional approach to gradient estimates of Finslerian Schrödinger equation arXiv:2312.06617v2 [math.DG], 2024) allows us to give the gradient estimate under the assumption of certain bounded non-Riemannian tensors. Finally, we prove the Liouville-type theorem and the Harnack inequality for such solutions as applications.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01355-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01355-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Finsler - yamabe型方程$$u_t=\Delta ^{\nabla u} u+au+bu^\alpha .$$的正解,给出了紧致Finsler度量空间上具有\(CD(-K,N)\)条件的Hamilton-type梯度估计。此外,在具有混合加权Ricci曲率有界的前向完全非紧Finsler度量度量空间上,第三作者(Shen)在非线性度量度量空间上的算子I: Finsler流形上的一个新的拉普拉斯比较定理和Finsler方程梯度估计的一种传统方法[数学]. Schrödinger方程[xiv:2312.06617v2]。DG], 2024)允许我们在某些有界非黎曼张量的假设下给出梯度估计。最后,对这类解的应用证明了liouville型定理和Harnack不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamilton-type gradient estimates for Yamabe-type equations on Finsler manifolds

In this paper, we study the positive solution to the Finslerian Yamabe-type equation

$$u_t=\Delta ^{\nabla u} u+au+bu^\alpha .$$

We give the Hamilton-type gradient estimate on compact Finsler metric measure spaces with the celebrated \(CD(-K,N)\) condition. Besides, on forward complete noncompact Finsler metric measure spaces with the mixed weighted Ricci curvature bounded below, the new comparison theorem established by the third author (Shen in Operators on nonlinear metric measure spaces I: A new Laplacian comparison theorem on Finsler manifolds and a traditional approach to gradient estimates of Finslerian Schrödinger equation arXiv:2312.06617v2 [math.DG], 2024) allows us to give the gradient estimate under the assumption of certain bounded non-Riemannian tensors. Finally, we prove the Liouville-type theorem and the Harnack inequality for such solutions as applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信