Tzu-Han Hsu, Ana Oliveira da Costa, Andrew Wintenberg, Ezio Bartocci, Borzoo Bonakdarpour
{"title":"超属性的灰盒运行时强制","authors":"Tzu-Han Hsu, Ana Oliveira da Costa, Andrew Wintenberg, Ezio Bartocci, Borzoo Bonakdarpour","doi":"10.1007/s00236-025-00502-1","DOIUrl":null,"url":null,"abstract":"<div><p>Enforcement of information-flow policies has been extensively studied by language-based approaches over the past few decades. In this paper, we propose an alternative, novel, general, and effective approach using enforcement of <i>hyperproperties</i>– a powerful formalism for expressing and reasoning about a wide range of information-flow security policies. We study <i>black-</i> vs. <i>gray-</i> vs. <i>white-box</i> enforcement of hyperproperties expressed by nondeterministic finite-word hyperautomata (NFH), where the enforcer has null, some, or complete information about the implementation of the system under scrutiny. Given an NFH, in order to generate a runtime enforcer, we reduce the problem to controller synthesis for hyperproperties and subsequently to the satisfiability problem for quantified Boolean formulas (QBFs). The resulting enforcers are transferable with low-overhead. We conduct a rich set of case studies, including information-flow control for JavaScript code, as well as synthesizing obfuscators for control plants.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"62 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-025-00502-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Gray-box runtime enforcement of hyperproperties\",\"authors\":\"Tzu-Han Hsu, Ana Oliveira da Costa, Andrew Wintenberg, Ezio Bartocci, Borzoo Bonakdarpour\",\"doi\":\"10.1007/s00236-025-00502-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enforcement of information-flow policies has been extensively studied by language-based approaches over the past few decades. In this paper, we propose an alternative, novel, general, and effective approach using enforcement of <i>hyperproperties</i>– a powerful formalism for expressing and reasoning about a wide range of information-flow security policies. We study <i>black-</i> vs. <i>gray-</i> vs. <i>white-box</i> enforcement of hyperproperties expressed by nondeterministic finite-word hyperautomata (NFH), where the enforcer has null, some, or complete information about the implementation of the system under scrutiny. Given an NFH, in order to generate a runtime enforcer, we reduce the problem to controller synthesis for hyperproperties and subsequently to the satisfiability problem for quantified Boolean formulas (QBFs). The resulting enforcers are transferable with low-overhead. We conduct a rich set of case studies, including information-flow control for JavaScript code, as well as synthesizing obfuscators for control plants.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"62 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-025-00502-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-025-00502-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-025-00502-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enforcement of information-flow policies has been extensively studied by language-based approaches over the past few decades. In this paper, we propose an alternative, novel, general, and effective approach using enforcement of hyperproperties– a powerful formalism for expressing and reasoning about a wide range of information-flow security policies. We study black- vs. gray- vs. white-box enforcement of hyperproperties expressed by nondeterministic finite-word hyperautomata (NFH), where the enforcer has null, some, or complete information about the implementation of the system under scrutiny. Given an NFH, in order to generate a runtime enforcer, we reduce the problem to controller synthesis for hyperproperties and subsequently to the satisfiability problem for quantified Boolean formulas (QBFs). The resulting enforcers are transferable with low-overhead. We conduct a rich set of case studies, including information-flow control for JavaScript code, as well as synthesizing obfuscators for control plants.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.