{"title":"分配格范畴上理想格函子的一元方面","authors":"Ando Razafindrakoto","doi":"10.1007/s10485-025-09811-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that the construction of the frame of ideals from a distributive lattice induces a monad whose algebras are precisely the frames and frame homomorphisms. Using the Fakir construction of an idempotent approximation of a monad, we extend B. Jacobs’ results on lax idempotent monads and show that the sequence of monads and comonads generated by successive iterations of this ideal functor on its algebras and coalgebras do not strictly lead to a new category. We further extend this result and provide a new proof of the equivalence between distributive lattices and coherent frames by showing that when the first inductive step in the Fakir construction is the identity monad, then the ambient category is equivalent to the category of free algebras.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09811-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Monadic Aspects of the Ideal Lattice Functor on the Category of Distributive Lattices\",\"authors\":\"Ando Razafindrakoto\",\"doi\":\"10.1007/s10485-025-09811-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that the construction of the frame of ideals from a distributive lattice induces a monad whose algebras are precisely the frames and frame homomorphisms. Using the Fakir construction of an idempotent approximation of a monad, we extend B. Jacobs’ results on lax idempotent monads and show that the sequence of monads and comonads generated by successive iterations of this ideal functor on its algebras and coalgebras do not strictly lead to a new category. We further extend this result and provide a new proof of the equivalence between distributive lattices and coherent frames by showing that when the first inductive step in the Fakir construction is the identity monad, then the ambient category is equivalent to the category of free algebras.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09811-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09811-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09811-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Monadic Aspects of the Ideal Lattice Functor on the Category of Distributive Lattices
It is known that the construction of the frame of ideals from a distributive lattice induces a monad whose algebras are precisely the frames and frame homomorphisms. Using the Fakir construction of an idempotent approximation of a monad, we extend B. Jacobs’ results on lax idempotent monads and show that the sequence of monads and comonads generated by successive iterations of this ideal functor on its algebras and coalgebras do not strictly lead to a new category. We further extend this result and provide a new proof of the equivalence between distributive lattices and coherent frames by showing that when the first inductive step in the Fakir construction is the identity monad, then the ambient category is equivalent to the category of free algebras.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.