计算弱光图像增强模型综述:挑战、基准和展望

IF 12.1 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pallavi Singh, Ashish Kumar Bhandari
{"title":"计算弱光图像增强模型综述:挑战、基准和展望","authors":"Pallavi Singh,&nbsp;Ashish Kumar Bhandari","doi":"10.1007/s11831-025-10226-7","DOIUrl":null,"url":null,"abstract":"<div><p>Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 5","pages":"2853 - 2885"},"PeriodicalIF":12.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives\",\"authors\":\"Pallavi Singh,&nbsp;Ashish Kumar Bhandari\",\"doi\":\"10.1007/s11831-025-10226-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 5\",\"pages\":\"2853 - 2885\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-025-10226-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10226-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预处理技术,如低光图像改善有各种各样的实际用途。提高光学灵敏度和在低光条件下拍摄的照片的口径是目标。改善低光图像的技术同时提高了图像的亮度、对比度和降噪。然而,自学工具加速了这一领域的进步。因此,许多深度神经网络被创建或投入使用。因此,本文快速总结了低光图像改进的技术现状,包括与有争议的开放主题相关的技术。我们总结了目前在低光环境下进行的深度学习技术。一个清晰的概述,传统的方法,提高低光初级图像。我们提供基于深度学习算法和神经结构拓扑的增强技术。具体来说,基于深度学习的低光图像改进技术的现状可以大致分为四个部分:基于视觉的方法、未观察学习、无监督学习和观察学习技术。在那之后,一个昏暗的照片数据库被收集和检查。此外,我们还概述了几种用于增强弱光图像的质量评估标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives

Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.80
自引率
4.10%
发文量
153
审稿时长
>12 weeks
期刊介绍: Archives of Computational Methods in Engineering Aim and Scope: Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication. Review Format: Reviews published in the journal offer: A survey of current literature Critical exposition of topics in their full complexity By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信