Ihya Talibi, Farah Balaadich, Brahim El Boukari, Jalila El Ghordaf
{"title":"具有对数非线性的分数阶p- laplace型kirchhoff方程的存在性","authors":"Ihya Talibi, Farah Balaadich, Brahim El Boukari, Jalila El Ghordaf","doi":"10.1007/s11565-025-00599-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the global existence of weak solutions for parabolic Kirchhoff-type problems of the following form: </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} u_t+ M(\\Vert u\\Vert _{W_0}^p)(-\\Delta )_p^s u+\\pi _{p\\theta }(u)=\\pi _{p\\theta }(u)\\log (\\vert u\\vert ) & \\text{ in } \\Omega , \\quad t>0,\\\\ u(x, 0)=u_0(x) & \\text{ in } \\Omega \\\\ u=0 & \\text{ in } (\\mathbb {R}^n \\backslash \\Omega ),\\quad t>0, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span>, <span>\\(\\pi _{p\\theta }(x)=\\vert x\\vert ^{p\\theta -2}x\\)</span>, <span>\\(1\\le \\theta <\\frac{p_s^*}{p}\\)</span>, <span>\\(2< p<\\frac{n}{s}\\)</span>, <span>\\(0<s<1\\)</span>, <span>\\(M: \\mathbb {R}^+\\rightarrow \\mathbb {R}^+\\)</span> is a continuous function defined by <span>\\(M(r)=r^{\\theta -1}\\)</span> and <span>\\((-\\Delta )_p^s\\)</span> is the fractional <i>p</i>-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some existence results for a Kirchhoff-type equation involving fractional p-Laplacian with logarithmic nonlinearity\",\"authors\":\"Ihya Talibi, Farah Balaadich, Brahim El Boukari, Jalila El Ghordaf\",\"doi\":\"10.1007/s11565-025-00599-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the global existence of weak solutions for parabolic Kirchhoff-type problems of the following form: </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} u_t+ M(\\\\Vert u\\\\Vert _{W_0}^p)(-\\\\Delta )_p^s u+\\\\pi _{p\\\\theta }(u)=\\\\pi _{p\\\\theta }(u)\\\\log (\\\\vert u\\\\vert ) & \\\\text{ in } \\\\Omega , \\\\quad t>0,\\\\\\\\ u(x, 0)=u_0(x) & \\\\text{ in } \\\\Omega \\\\\\\\ u=0 & \\\\text{ in } (\\\\mathbb {R}^n \\\\backslash \\\\Omega ),\\\\quad t>0, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span>, <span>\\\\(\\\\pi _{p\\\\theta }(x)=\\\\vert x\\\\vert ^{p\\\\theta -2}x\\\\)</span>, <span>\\\\(1\\\\le \\\\theta <\\\\frac{p_s^*}{p}\\\\)</span>, <span>\\\\(2< p<\\\\frac{n}{s}\\\\)</span>, <span>\\\\(0<s<1\\\\)</span>, <span>\\\\(M: \\\\mathbb {R}^+\\\\rightarrow \\\\mathbb {R}^+\\\\)</span> is a continuous function defined by <span>\\\\(M(r)=r^{\\\\theta -1}\\\\)</span> and <span>\\\\((-\\\\Delta )_p^s\\\\)</span> is the fractional <i>p</i>-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00599-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00599-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
where \(\Omega \subset \mathbb {R}^n\), \(\pi _{p\theta }(x)=\vert x\vert ^{p\theta -2}x\), \(1\le \theta <\frac{p_s^*}{p}\), \(2< p<\frac{n}{s}\), \(0<s<1\), \(M: \mathbb {R}^+\rightarrow \mathbb {R}^+\) is a continuous function defined by \(M(r)=r^{\theta -1}\) and \((-\Delta )_p^s\) is the fractional p-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.