具有对数非线性的分数阶p- laplace型kirchhoff方程的存在性

Q2 Mathematics
Ihya Talibi, Farah Balaadich, Brahim El Boukari, Jalila El Ghordaf
{"title":"具有对数非线性的分数阶p- laplace型kirchhoff方程的存在性","authors":"Ihya Talibi,&nbsp;Farah Balaadich,&nbsp;Brahim El Boukari,&nbsp;Jalila El Ghordaf","doi":"10.1007/s11565-025-00599-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the global existence of weak solutions for parabolic Kirchhoff-type problems of the following form: </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} u_t+ M(\\Vert u\\Vert _{W_0}^p)(-\\Delta )_p^s u+\\pi _{p\\theta }(u)=\\pi _{p\\theta }(u)\\log (\\vert u\\vert ) &amp; \\text{ in } \\Omega , \\quad t&gt;0,\\\\ u(x, 0)=u_0(x) &amp; \\text{ in } \\Omega \\\\ u=0 &amp; \\text{ in } (\\mathbb {R}^n \\backslash \\Omega ),\\quad t&gt;0, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span>, <span>\\(\\pi _{p\\theta }(x)=\\vert x\\vert ^{p\\theta -2}x\\)</span>, <span>\\(1\\le \\theta &lt;\\frac{p_s^*}{p}\\)</span>, <span>\\(2&lt; p&lt;\\frac{n}{s}\\)</span>, <span>\\(0&lt;s&lt;1\\)</span>, <span>\\(M: \\mathbb {R}^+\\rightarrow \\mathbb {R}^+\\)</span> is a continuous function defined by <span>\\(M(r)=r^{\\theta -1}\\)</span> and <span>\\((-\\Delta )_p^s\\)</span> is the fractional <i>p</i>-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some existence results for a Kirchhoff-type equation involving fractional p-Laplacian with logarithmic nonlinearity\",\"authors\":\"Ihya Talibi,&nbsp;Farah Balaadich,&nbsp;Brahim El Boukari,&nbsp;Jalila El Ghordaf\",\"doi\":\"10.1007/s11565-025-00599-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the global existence of weak solutions for parabolic Kirchhoff-type problems of the following form: </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} u_t+ M(\\\\Vert u\\\\Vert _{W_0}^p)(-\\\\Delta )_p^s u+\\\\pi _{p\\\\theta }(u)=\\\\pi _{p\\\\theta }(u)\\\\log (\\\\vert u\\\\vert ) &amp; \\\\text{ in } \\\\Omega , \\\\quad t&gt;0,\\\\\\\\ u(x, 0)=u_0(x) &amp; \\\\text{ in } \\\\Omega \\\\\\\\ u=0 &amp; \\\\text{ in } (\\\\mathbb {R}^n \\\\backslash \\\\Omega ),\\\\quad t&gt;0, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span>, <span>\\\\(\\\\pi _{p\\\\theta }(x)=\\\\vert x\\\\vert ^{p\\\\theta -2}x\\\\)</span>, <span>\\\\(1\\\\le \\\\theta &lt;\\\\frac{p_s^*}{p}\\\\)</span>, <span>\\\\(2&lt; p&lt;\\\\frac{n}{s}\\\\)</span>, <span>\\\\(0&lt;s&lt;1\\\\)</span>, <span>\\\\(M: \\\\mathbb {R}^+\\\\rightarrow \\\\mathbb {R}^+\\\\)</span> is a continuous function defined by <span>\\\\(M(r)=r^{\\\\theta -1}\\\\)</span> and <span>\\\\((-\\\\Delta )_p^s\\\\)</span> is the fractional <i>p</i>-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00599-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00599-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下形式的抛物型kirchhoff型问题的整体弱解的存在性:$$\begin{aligned} {\left\{ \begin{array}{ll} u_t+ M(\Vert u\Vert _{W_0}^p)(-\Delta )_p^s u+\pi _{p\theta }(u)=\pi _{p\theta }(u)\log (\vert u\vert ) & \text{ in } \Omega , \quad t>0,\\ u(x, 0)=u_0(x) & \text{ in } \Omega \\ u=0 & \text{ in } (\mathbb {R}^n \backslash \Omega ),\quad t>0, \end{array}\right. } \end{aligned}$$,其中\(\Omega \subset \mathbb {R}^n\), \(\pi _{p\theta }(x)=\vert x\vert ^{p\theta -2}x\), \(1\le \theta <\frac{p_s^*}{p}\), \(2< p<\frac{n}{s}\), \(0<s<1\), \(M: \mathbb {R}^+\rightarrow \mathbb {R}^+\)是由\(M(r)=r^{\theta -1}\)定义的连续函数,\((-\Delta )_p^s\)是分数阶p- laplace算子。基于势井法,结合杨测度理论和伽辽金方法,得到了全局解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some existence results for a Kirchhoff-type equation involving fractional p-Laplacian with logarithmic nonlinearity

In this paper, we study the global existence of weak solutions for parabolic Kirchhoff-type problems of the following form:

$$\begin{aligned} {\left\{ \begin{array}{ll} u_t+ M(\Vert u\Vert _{W_0}^p)(-\Delta )_p^s u+\pi _{p\theta }(u)=\pi _{p\theta }(u)\log (\vert u\vert ) & \text{ in } \Omega , \quad t>0,\\ u(x, 0)=u_0(x) & \text{ in } \Omega \\ u=0 & \text{ in } (\mathbb {R}^n \backslash \Omega ),\quad t>0, \end{array}\right. } \end{aligned}$$

where \(\Omega \subset \mathbb {R}^n\), \(\pi _{p\theta }(x)=\vert x\vert ^{p\theta -2}x\), \(1\le \theta <\frac{p_s^*}{p}\), \(2< p<\frac{n}{s}\), \(0<s<1\), \(M: \mathbb {R}^+\rightarrow \mathbb {R}^+\) is a continuous function defined by \(M(r)=r^{\theta -1}\) and \((-\Delta )_p^s\) is the fractional p-Laplacian operator. Based on the potential well method combined with the theory of Young measures and the Galerkin method, we obtain the existence of global solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信