热核反应速率的统一方法

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Ashik A. Kabeer, Dilip Kumar
{"title":"热核反应速率的统一方法","authors":"Ashik A. Kabeer,&nbsp;Dilip Kumar","doi":"10.1007/s10509-025-04458-z","DOIUrl":null,"url":null,"abstract":"<div><p>Thermonuclear fusion reactions within stellar interiors are primarily responsible for generating energy and synthesizing the elements that compose the universe. Calculating the reaction rates provides essential information about the lifespan and luminosity of Sun-like stars, eventually, it has siginificant role in big-bang nucleosynthesis. In this article, we consider the exact thermonuclear reaction rate functions in standard, cut-off, and depleted tail cases. Since 1984, analytic solution of these thermonuclear reaction rates were obtained by many authors and a number of possible generalizations and their closed form solutions are available in the literature. The present study unifies all such generalizations through a single thermonuclear rate function via the techniques in statistical mechanics. A novel velocity distribution function is developed for interacting particles, extending their applicability to the maximum. Since real stellar scenarios often deviate from strict hydrostatic equilibrium case, this improved distribution captures these deviations effectively. The paper gives more emphasis on non-resonant reaction rates in depleted tail case and obtain the closed-form solution in terms of Buschman H-function of two variables.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified approach to thermonuclear reaction rates\",\"authors\":\"Ashik A. Kabeer,&nbsp;Dilip Kumar\",\"doi\":\"10.1007/s10509-025-04458-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermonuclear fusion reactions within stellar interiors are primarily responsible for generating energy and synthesizing the elements that compose the universe. Calculating the reaction rates provides essential information about the lifespan and luminosity of Sun-like stars, eventually, it has siginificant role in big-bang nucleosynthesis. In this article, we consider the exact thermonuclear reaction rate functions in standard, cut-off, and depleted tail cases. Since 1984, analytic solution of these thermonuclear reaction rates were obtained by many authors and a number of possible generalizations and their closed form solutions are available in the literature. The present study unifies all such generalizations through a single thermonuclear rate function via the techniques in statistical mechanics. A novel velocity distribution function is developed for interacting particles, extending their applicability to the maximum. Since real stellar scenarios often deviate from strict hydrostatic equilibrium case, this improved distribution captures these deviations effectively. The paper gives more emphasis on non-resonant reaction rates in depleted tail case and obtain the closed-form solution in terms of Buschman H-function of two variables.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04458-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04458-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

恒星内部的热核融合反应主要负责产生能量和合成组成宇宙的元素。计算反应速率可以提供类太阳恒星的寿命和光度的基本信息,最终在大爆炸核合成中起着重要的作用。在本文中,我们考虑了在标准、截止和耗尽尾情况下的精确热核反应速率函数。自1984年以来,许多作者获得了这些热核反应速率的解析解,并在文献中提供了许多可能的推广及其封闭形式解。本研究利用统计力学技术,通过一个单一的热核速率函数,将所有这些概括统一起来。提出了一种新的相互作用粒子的速度分布函数,将其适用性扩展到最大。由于真实的恒星情况经常偏离严格的流体静力平衡情况,这种改进的分布有效地捕获了这些偏差。本文着重研究了贫尾情况下的非共振反应速率,得到了双变量Buschman h函数的闭型解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified approach to thermonuclear reaction rates

Thermonuclear fusion reactions within stellar interiors are primarily responsible for generating energy and synthesizing the elements that compose the universe. Calculating the reaction rates provides essential information about the lifespan and luminosity of Sun-like stars, eventually, it has siginificant role in big-bang nucleosynthesis. In this article, we consider the exact thermonuclear reaction rate functions in standard, cut-off, and depleted tail cases. Since 1984, analytic solution of these thermonuclear reaction rates were obtained by many authors and a number of possible generalizations and their closed form solutions are available in the literature. The present study unifies all such generalizations through a single thermonuclear rate function via the techniques in statistical mechanics. A novel velocity distribution function is developed for interacting particles, extending their applicability to the maximum. Since real stellar scenarios often deviate from strict hydrostatic equilibrium case, this improved distribution captures these deviations effectively. The paper gives more emphasis on non-resonant reaction rates in depleted tail case and obtain the closed-form solution in terms of Buschman H-function of two variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信