{"title":"正切双曲四杂化\\(\\hbox {Al}_2\\hbox {O}_3\\)、Ag、\\(\\hbox {TiO}_2\\)和ZnO纳米颗粒在水平和指数非达西多孔拉伸/收缩圆柱体上的EMHD流动对比研究和形状因子分析","authors":"P Senbagaraja, Poulomi De","doi":"10.1007/s12043-025-02928-1","DOIUrl":null,"url":null,"abstract":"<div><p>The applications of the present findings are extensive and transformative and these findings help in improving heat transfer in thermal industrial systems, facilitating efficient operation of solar collectors, electronic cooling devices, as well as targeting and destroying cancer cells in hyperthermia treatment in the medical field. This study analyses the tangent hyperbolic nanofluid with tetrahybrid nanoparticle that is the combination of <span>\\(\\hbox {Al}_2\\)</span> <span>\\(\\hbox {O}_3\\)</span>, Ag, <span>\\(\\hbox {TiO}_2\\)</span> and ZnO over horizontal and exponentially stretching/shrinking cylinder filled with non-Darcy porous medium. Electromagnetohydrodynamics (EMHD), Arrhenius activation energy, thermal radiation, heat source and chemical reaction were considered. The fundamental equations of non-linear ordinary differential equations (ODEs) were derived from the partial differential equations (PDEs) with similarity variables and fifth-order Runge–Kutta–Fehlberg method with shooting technique was performed. From the model, we obtained increase in temperature profile for magnetic parameter and radiation parameter and increase in concentration profile for activation energy parameter. Shape factor analysis on Nusselt number and Sherwood number was done and compared. Heat and mass transfer rate was investigated by changing the shapes of the nanoparticle on exponential and horizontal cylinder to get good results.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study and shape factor analysis of the EMHD flow on tangent hyperbolic tetrahybrid \\\\(\\\\hbox {Al}_2\\\\hbox {O}_3\\\\), Ag, \\\\(\\\\hbox {TiO}_2\\\\) and ZnO nanoparticles over the horizontal and exponentially non-Darcy porous stretching/shrinking cylinder\",\"authors\":\"P Senbagaraja, Poulomi De\",\"doi\":\"10.1007/s12043-025-02928-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The applications of the present findings are extensive and transformative and these findings help in improving heat transfer in thermal industrial systems, facilitating efficient operation of solar collectors, electronic cooling devices, as well as targeting and destroying cancer cells in hyperthermia treatment in the medical field. This study analyses the tangent hyperbolic nanofluid with tetrahybrid nanoparticle that is the combination of <span>\\\\(\\\\hbox {Al}_2\\\\)</span> <span>\\\\(\\\\hbox {O}_3\\\\)</span>, Ag, <span>\\\\(\\\\hbox {TiO}_2\\\\)</span> and ZnO over horizontal and exponentially stretching/shrinking cylinder filled with non-Darcy porous medium. Electromagnetohydrodynamics (EMHD), Arrhenius activation energy, thermal radiation, heat source and chemical reaction were considered. The fundamental equations of non-linear ordinary differential equations (ODEs) were derived from the partial differential equations (PDEs) with similarity variables and fifth-order Runge–Kutta–Fehlberg method with shooting technique was performed. From the model, we obtained increase in temperature profile for magnetic parameter and radiation parameter and increase in concentration profile for activation energy parameter. Shape factor analysis on Nusselt number and Sherwood number was done and compared. Heat and mass transfer rate was investigated by changing the shapes of the nanoparticle on exponential and horizontal cylinder to get good results.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-025-02928-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02928-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative study and shape factor analysis of the EMHD flow on tangent hyperbolic tetrahybrid \(\hbox {Al}_2\hbox {O}_3\), Ag, \(\hbox {TiO}_2\) and ZnO nanoparticles over the horizontal and exponentially non-Darcy porous stretching/shrinking cylinder
The applications of the present findings are extensive and transformative and these findings help in improving heat transfer in thermal industrial systems, facilitating efficient operation of solar collectors, electronic cooling devices, as well as targeting and destroying cancer cells in hyperthermia treatment in the medical field. This study analyses the tangent hyperbolic nanofluid with tetrahybrid nanoparticle that is the combination of \(\hbox {Al}_2\)\(\hbox {O}_3\), Ag, \(\hbox {TiO}_2\) and ZnO over horizontal and exponentially stretching/shrinking cylinder filled with non-Darcy porous medium. Electromagnetohydrodynamics (EMHD), Arrhenius activation energy, thermal radiation, heat source and chemical reaction were considered. The fundamental equations of non-linear ordinary differential equations (ODEs) were derived from the partial differential equations (PDEs) with similarity variables and fifth-order Runge–Kutta–Fehlberg method with shooting technique was performed. From the model, we obtained increase in temperature profile for magnetic parameter and radiation parameter and increase in concentration profile for activation energy parameter. Shape factor analysis on Nusselt number and Sherwood number was done and compared. Heat and mass transfer rate was investigated by changing the shapes of the nanoparticle on exponential and horizontal cylinder to get good results.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.