{"title":"一类非超椭圆伪实曲线模场的显式计算","authors":"Rubén A. Hidalgo","doi":"10.1007/s00013-025-02130-0","DOIUrl":null,"url":null,"abstract":"<div><p>For each even integer <span>\\(k \\ge 2\\)</span>, we construct an explicit real two-dimensional family <span>\\(C^{(k)}_{r,\\theta }\\)</span> of non-hyperelliptic pseudo-real Riemann surfaces of genus <span>\\(g=1+(2k-3)k^{4}\\)</span>. For each of them, we compute its field of moduli and also a minimal field of definition.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"63 - 77"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit computation of the field of moduli of some non-hyperelliptic pseudo-real curves\",\"authors\":\"Rubén A. Hidalgo\",\"doi\":\"10.1007/s00013-025-02130-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For each even integer <span>\\\\(k \\\\ge 2\\\\)</span>, we construct an explicit real two-dimensional family <span>\\\\(C^{(k)}_{r,\\\\theta }\\\\)</span> of non-hyperelliptic pseudo-real Riemann surfaces of genus <span>\\\\(g=1+(2k-3)k^{4}\\\\)</span>. For each of them, we compute its field of moduli and also a minimal field of definition.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"63 - 77\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02130-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02130-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Explicit computation of the field of moduli of some non-hyperelliptic pseudo-real curves
For each even integer \(k \ge 2\), we construct an explicit real two-dimensional family \(C^{(k)}_{r,\theta }\) of non-hyperelliptic pseudo-real Riemann surfaces of genus \(g=1+(2k-3)k^{4}\). For each of them, we compute its field of moduli and also a minimal field of definition.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.