一类Bang-Bang最优控制问题的后验误差估计

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Francisco Fuica
{"title":"一类Bang-Bang最优控制问题的后验误差估计","authors":"Francisco Fuica","doi":"10.1007/s00245-025-10276-0","DOIUrl":null,"url":null,"abstract":"<div><p>We propose and analyze a posteriori error estimates for a control-constrained optimal control problem with bang–bang solutions. We consider a solution strategy based on the variational approach, where the control variable is not discretized; no Tikhonov regularization is made. We design, for the proposed scheme, a residual-type a posteriori error estimator that can be decomposed as the sum of two individual contributions related to the discretization of the state and adjoint equations. We explore reliability and efficiency properties of the aforementioned error estimator. We illustrate the theory with numerical examples.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Estimates for a Bang–Bang Optimal Control Problem\",\"authors\":\"Francisco Fuica\",\"doi\":\"10.1007/s00245-025-10276-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose and analyze a posteriori error estimates for a control-constrained optimal control problem with bang–bang solutions. We consider a solution strategy based on the variational approach, where the control variable is not discretized; no Tikhonov regularization is made. We design, for the proposed scheme, a residual-type a posteriori error estimator that can be decomposed as the sum of two individual contributions related to the discretization of the state and adjoint equations. We explore reliability and efficiency properties of the aforementioned error estimator. We illustrate the theory with numerical examples.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10276-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10276-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并分析了一类具有bang-bang解的控制约束最优控制问题的后验误差估计。我们考虑了一种基于变分方法的解决策略,其中控制变量不离散;没有进行吉洪诺夫正则化。对于所提出的方案,我们设计了一个残差型后验误差估计器,它可以分解为与状态方程和伴随方程离散化相关的两个单独贡献的总和。我们探讨了上述误差估计器的可靠性和效率特性。我们用数值例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Posteriori Error Estimates for a Bang–Bang Optimal Control Problem

A Posteriori Error Estimates for a Bang–Bang Optimal Control Problem

We propose and analyze a posteriori error estimates for a control-constrained optimal control problem with bang–bang solutions. We consider a solution strategy based on the variational approach, where the control variable is not discretized; no Tikhonov regularization is made. We design, for the proposed scheme, a residual-type a posteriori error estimator that can be decomposed as the sum of two individual contributions related to the discretization of the state and adjoint equations. We explore reliability and efficiency properties of the aforementioned error estimator. We illustrate the theory with numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信