交换置换无限元组关于轨道数的对数凹性

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Abdelmalek Abdesselam
{"title":"交换置换无限元组关于轨道数的对数凹性","authors":"Abdelmalek Abdesselam","doi":"10.1007/s00026-024-00724-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>) be the number of <i>p</i>-tuples of commuting permutations of <i>n</i> elements whose permutation action results in exactly <i>k</i> orbits or connected components. We formulate the conjecture that, for every fixed <i>p</i> and <i>n</i>, the <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>) form a log-concave sequence with respect to <i>k</i>. For <span>\\(p=1\\)</span> this is a well-known property of unsigned Stirling numbers of the first kind. As the <span>\\(p=2\\)</span> case, our conjecture includes a previous one by Heim and Neuhauser, which strengthens a unimodality conjecture for the Nekrasov–Okounkov hook length polynomials. In this article, we prove the <span>\\(p=\\infty \\)</span> case of our conjecture. We start from an expression for the <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>),  which follows from an identity by Bryan and Fulman, obtained in the their study of orbifold higher equivariant Euler characteristics. We then derive the <span>\\(p\\rightarrow \\infty \\)</span> asymptotics. The last step essentially amounts to the log-concavity in <i>k</i> of a generalized Turán number, namely, the maximum product of <i>k</i> positive integers whose sum is <i>n</i>.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 2","pages":"563 - 573"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-024-00724-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Log-Concavity with Respect to the Number of Orbits for Infinite Tuples of Commuting Permutations\",\"authors\":\"Abdelmalek Abdesselam\",\"doi\":\"10.1007/s00026-024-00724-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>) be the number of <i>p</i>-tuples of commuting permutations of <i>n</i> elements whose permutation action results in exactly <i>k</i> orbits or connected components. We formulate the conjecture that, for every fixed <i>p</i> and <i>n</i>, the <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>) form a log-concave sequence with respect to <i>k</i>. For <span>\\\\(p=1\\\\)</span> this is a well-known property of unsigned Stirling numbers of the first kind. As the <span>\\\\(p=2\\\\)</span> case, our conjecture includes a previous one by Heim and Neuhauser, which strengthens a unimodality conjecture for the Nekrasov–Okounkov hook length polynomials. In this article, we prove the <span>\\\\(p=\\\\infty \\\\)</span> case of our conjecture. We start from an expression for the <i>A</i>(<i>p</i>, <i>n</i>, <i>k</i>),  which follows from an identity by Bryan and Fulman, obtained in the their study of orbifold higher equivariant Euler characteristics. We then derive the <span>\\\\(p\\\\rightarrow \\\\infty \\\\)</span> asymptotics. The last step essentially amounts to the log-concavity in <i>k</i> of a generalized Turán number, namely, the maximum product of <i>k</i> positive integers whose sum is <i>n</i>.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"29 2\",\"pages\":\"563 - 573\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-024-00724-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-024-00724-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-024-00724-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设A(p, n, k)为n个元素交换置换的p元组的个数,其置换作用恰好产生k个轨道或连通分量。对于每一个固定的p和n, A(p, n, k)形成一个关于k的对数凹序列。对于\(p=1\),这是第一类无符号斯特林数的一个众所周知的性质。在\(p=2\)的情况下,我们的猜想包含了Heim和Neuhauser先前的猜想,该猜想加强了Nekrasov-Okounkov钩长多项式的单模猜想。在本文中,我们证明了我们猜想的\(p=\infty \)情况。我们从A(p, n, k)的表达式开始,这个表达式是Bryan和Fulman在研究轨道高等变欧拉特性时得到的恒等式。然后我们推导出\(p\rightarrow \infty \)渐近性。最后一步本质上相当于广义Turán数在k上的对数凹性,即k个和为n的正整数的最大积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log-Concavity with Respect to the Number of Orbits for Infinite Tuples of Commuting Permutations

Let A(pnk) be the number of p-tuples of commuting permutations of n elements whose permutation action results in exactly k orbits or connected components. We formulate the conjecture that, for every fixed p and n, the A(pnk) form a log-concave sequence with respect to k. For \(p=1\) this is a well-known property of unsigned Stirling numbers of the first kind. As the \(p=2\) case, our conjecture includes a previous one by Heim and Neuhauser, which strengthens a unimodality conjecture for the Nekrasov–Okounkov hook length polynomials. In this article, we prove the \(p=\infty \) case of our conjecture. We start from an expression for the A(pnk),  which follows from an identity by Bryan and Fulman, obtained in the their study of orbifold higher equivariant Euler characteristics. We then derive the \(p\rightarrow \infty \) asymptotics. The last step essentially amounts to the log-concavity in k of a generalized Turán number, namely, the maximum product of k positive integers whose sum is n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信