揭示了热改性聚类技术对破碎、横向流动和核停止的影响

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Sucheta, Sakshi Gautam, Rajeev K. Puri
{"title":"揭示了热改性聚类技术对破碎、横向流动和核停止的影响","authors":"Sucheta,&nbsp;Sakshi Gautam,&nbsp;Rajeev K. Puri","doi":"10.1007/s12648-025-03550-y","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the advantages of thermal binding energy over cold binding energy in the clustering technique for identifying bound structures, particularly in the context of multifragmentation, transverse flow, and nuclear stopping. To analyze the nucleon’s phase space, the Quantum Molecular Dynamics (QMD) model is employed, incorporating an enhanced version of the widely used Minimum Spanning Tree (MST) clusterization algorithm. This enhancement involves applying binding energy constraints to pre-clusters. Our findings highlight the significant impact of thermal binding constraints on various observables in <span>\\(^{40}\\)</span>Ca <span>\\(+\\)</span> <span>\\(^{40}\\)</span>Ca and <span>\\(^{197}\\)</span>Au <span>\\(+\\)</span> <span>\\(^{197}\\)</span>Au collisions at low beam energies. However, the influence of this modification diminishes as beam energy increases. Furthermore, we compared nuclear stopping results from our calculations with experimental data from the INDRA collaboration. This comparison reveals that incorporating thermal binding energy constraints yields results that align more closely with experimental measurements compared to those based on cold matter binding energy.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 9","pages":"3435 - 3444"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the effect of thermally modified clusterization technique on fragmentation, transverse flow and nuclear stopping\",\"authors\":\"Sucheta,&nbsp;Sakshi Gautam,&nbsp;Rajeev K. Puri\",\"doi\":\"10.1007/s12648-025-03550-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study investigates the advantages of thermal binding energy over cold binding energy in the clustering technique for identifying bound structures, particularly in the context of multifragmentation, transverse flow, and nuclear stopping. To analyze the nucleon’s phase space, the Quantum Molecular Dynamics (QMD) model is employed, incorporating an enhanced version of the widely used Minimum Spanning Tree (MST) clusterization algorithm. This enhancement involves applying binding energy constraints to pre-clusters. Our findings highlight the significant impact of thermal binding constraints on various observables in <span>\\\\(^{40}\\\\)</span>Ca <span>\\\\(+\\\\)</span> <span>\\\\(^{40}\\\\)</span>Ca and <span>\\\\(^{197}\\\\)</span>Au <span>\\\\(+\\\\)</span> <span>\\\\(^{197}\\\\)</span>Au collisions at low beam energies. However, the influence of this modification diminishes as beam energy increases. Furthermore, we compared nuclear stopping results from our calculations with experimental data from the INDRA collaboration. This comparison reveals that incorporating thermal binding energy constraints yields results that align more closely with experimental measurements compared to those based on cold matter binding energy.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"99 9\",\"pages\":\"3435 - 3444\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-025-03550-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03550-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了热结合能比冷结合能在聚类技术中识别结合结构的优势,特别是在多重破碎、横向流动和核停止的情况下。为了分析核子的相空间,采用了量子分子动力学(QMD)模型,结合了广泛使用的最小生成树(MST)聚类算法的增强版本。这种增强包括对预簇应用结合能约束。我们的发现强调了在低束流能量下,热束缚约束对\(^{40}\) Ca \(+\)\(^{40}\) Ca和\(^{197}\) Au \(+\)\(^{197}\) Au碰撞中各种可观测值的显著影响。然而,这种修正的影响随着光束能量的增加而减小。此外,我们将计算得到的核停止结果与INDRA合作的实验数据进行了比较。这一比较表明,与基于冷物质结合能的结果相比,结合热结合能约束产生的结果与实验测量结果更接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the effect of thermally modified clusterization technique on fragmentation, transverse flow and nuclear stopping

The present study investigates the advantages of thermal binding energy over cold binding energy in the clustering technique for identifying bound structures, particularly in the context of multifragmentation, transverse flow, and nuclear stopping. To analyze the nucleon’s phase space, the Quantum Molecular Dynamics (QMD) model is employed, incorporating an enhanced version of the widely used Minimum Spanning Tree (MST) clusterization algorithm. This enhancement involves applying binding energy constraints to pre-clusters. Our findings highlight the significant impact of thermal binding constraints on various observables in \(^{40}\)Ca \(+\) \(^{40}\)Ca and \(^{197}\)Au \(+\) \(^{197}\)Au collisions at low beam energies. However, the influence of this modification diminishes as beam energy increases. Furthermore, we compared nuclear stopping results from our calculations with experimental data from the INDRA collaboration. This comparison reveals that incorporating thermal binding energy constraints yields results that align more closely with experimental measurements compared to those based on cold matter binding energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信