各向异性材料中超声探测场的渐近性

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
E. V. Glushkov, N. V. Glushkova
{"title":"各向异性材料中超声探测场的渐近性","authors":"E. V. Glushkov,&nbsp;N. V. Glushkova","doi":"10.1134/S1061830925700044","DOIUrl":null,"url":null,"abstract":"<p>To model the wave field of an ultrasonic transducer in materials with strong anisotropy (monocrystalline alloys of turbine blades, composite materials, welded joints, etc.), a physically descriptive asymptotic representation is obtained for quasi-spherical body waves excited by a surface source in an arbitrarily anisotropic elastic half-space. The asymptotics is derived by the stationary phase method from the integral representation of the solution in terms of contour integrals of the inverse Fourier transform. The peculiarities of their derivation and numerical implementation are discussed on the examples of a transversely isotropic composite material and a monocrystalline nickel alloy with cubic anisotropy. The dependence of  the stationary points on the direction is more complicated here than in the isotropic case, up to the appearance of multiple stationary points and folds, giving rise to additional wave fronts and caustics. A comparison is made with the plane waves described by eigensolutions of the classical Christoffel equation. It is shown that, despite the phenomenon of multiple wave fronts, varying the plane-wave orientation allows us to obtain the same group velocity vectors as for any of the waves described by the asymptotics.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"61 3","pages":"266 - 279"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Ultrasonic Sounding Field in Anisotropic Materials\",\"authors\":\"E. V. Glushkov,&nbsp;N. V. Glushkova\",\"doi\":\"10.1134/S1061830925700044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To model the wave field of an ultrasonic transducer in materials with strong anisotropy (monocrystalline alloys of turbine blades, composite materials, welded joints, etc.), a physically descriptive asymptotic representation is obtained for quasi-spherical body waves excited by a surface source in an arbitrarily anisotropic elastic half-space. The asymptotics is derived by the stationary phase method from the integral representation of the solution in terms of contour integrals of the inverse Fourier transform. The peculiarities of their derivation and numerical implementation are discussed on the examples of a transversely isotropic composite material and a monocrystalline nickel alloy with cubic anisotropy. The dependence of  the stationary points on the direction is more complicated here than in the isotropic case, up to the appearance of multiple stationary points and folds, giving rise to additional wave fronts and caustics. A comparison is made with the plane waves described by eigensolutions of the classical Christoffel equation. It is shown that, despite the phenomenon of multiple wave fronts, varying the plane-wave orientation allows us to obtain the same group velocity vectors as for any of the waves described by the asymptotics.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":\"61 3\",\"pages\":\"266 - 279\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830925700044\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830925700044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟超声换能器在强各向异性材料(涡轮叶片单晶合金、复合材料、焊接接头等)中的波场,在任意各向异性弹性半空间中,得到了由表面源激发的准球形体波的物理描述渐近表示。用定相法从傅里叶反变换的轮廓积分的解的积分表示中推导出渐近性。以横向各向同性复合材料和具有立方各向异性的单晶镍合金为例,讨论了其推导和数值实现的特殊性。稳态点对方向的依赖比各向同性的情况更复杂,直到出现多个稳态点和褶皱,产生额外的波前和焦散。并与经典克里斯托费尔方程的特征解所描述的平面波作了比较。结果表明,尽管存在多个波阵面现象,但改变平面波方向可以使我们获得与渐近描述的任何波相同的群速度矢量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics of Ultrasonic Sounding Field in Anisotropic Materials

Asymptotics of Ultrasonic Sounding Field in Anisotropic Materials

To model the wave field of an ultrasonic transducer in materials with strong anisotropy (monocrystalline alloys of turbine blades, composite materials, welded joints, etc.), a physically descriptive asymptotic representation is obtained for quasi-spherical body waves excited by a surface source in an arbitrarily anisotropic elastic half-space. The asymptotics is derived by the stationary phase method from the integral representation of the solution in terms of contour integrals of the inverse Fourier transform. The peculiarities of their derivation and numerical implementation are discussed on the examples of a transversely isotropic composite material and a monocrystalline nickel alloy with cubic anisotropy. The dependence of  the stationary points on the direction is more complicated here than in the isotropic case, up to the appearance of multiple stationary points and folds, giving rise to additional wave fronts and caustics. A comparison is made with the plane waves described by eigensolutions of the classical Christoffel equation. It is shown that, despite the phenomenon of multiple wave fronts, varying the plane-wave orientation allows us to obtain the same group velocity vectors as for any of the waves described by the asymptotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信