高梯度Kelvin-Voigt弹性的唯一性

Q2 Mathematics
Brian Straughan
{"title":"高梯度Kelvin-Voigt弹性的唯一性","authors":"Brian Straughan","doi":"10.1007/s11565-025-00605-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate uniqueness in theories of linear elasticity with a Kelvin–Voigt effect, assuming the elastic coefficients are not sign-definite. This is important with modern materials such as auxetic materials where Poisson’s ratio may be negative. In addition to studying classical linear elasticity with Green–Naghdi thermodynamics of type II, we also analyse a theory which incorporates higher gradients of both elastic displacement and temperature. To allow for non-sign definite elastic coefficients we employ a logarithmic convexity technique. Due to the special nature of the governing partial differential equations it is necessary to construct a novel functional with which one may use logarithmic convexity.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-025-00605-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Uniqueness in Kelvin–Voigt elasticity with higher gradients\",\"authors\":\"Brian Straughan\",\"doi\":\"10.1007/s11565-025-00605-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate uniqueness in theories of linear elasticity with a Kelvin–Voigt effect, assuming the elastic coefficients are not sign-definite. This is important with modern materials such as auxetic materials where Poisson’s ratio may be negative. In addition to studying classical linear elasticity with Green–Naghdi thermodynamics of type II, we also analyse a theory which incorporates higher gradients of both elastic displacement and temperature. To allow for non-sign definite elastic coefficients we employ a logarithmic convexity technique. Due to the special nature of the governing partial differential equations it is necessary to construct a novel functional with which one may use logarithmic convexity.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-025-00605-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00605-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00605-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有Kelvin-Voigt效应的线性弹性理论的唯一性,假设弹性系数不是符号确定的。这对现代材料很重要,比如泊松比可能为负的生料。除了用Green-Naghdi II型热力学研究经典线性弹性外,我们还分析了一个包含弹性位移和温度更高梯度的理论。为了允许无符号确定弹性系数,我们采用对数凸性技术。由于控制偏微分方程的特殊性质,有必要构造一个可以利用对数凸性的新泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness in Kelvin–Voigt elasticity with higher gradients

We investigate uniqueness in theories of linear elasticity with a Kelvin–Voigt effect, assuming the elastic coefficients are not sign-definite. This is important with modern materials such as auxetic materials where Poisson’s ratio may be negative. In addition to studying classical linear elasticity with Green–Naghdi thermodynamics of type II, we also analyse a theory which incorporates higher gradients of both elastic displacement and temperature. To allow for non-sign definite elastic coefficients we employ a logarithmic convexity technique. Due to the special nature of the governing partial differential equations it is necessary to construct a novel functional with which one may use logarithmic convexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信