高熵合金相预测的集成学习算法

IF 0.7 Q2 MATHEMATICS
Masoud Yousefi, Khosrow Rahmani, Masoud Rajabi, Ali Reyhani, Nayereh Asgari
{"title":"高熵合金相预测的集成学习算法","authors":"Masoud Yousefi,&nbsp;Khosrow Rahmani,&nbsp;Masoud Rajabi,&nbsp;Ali Reyhani,&nbsp;Nayereh Asgari","doi":"10.1007/s13370-025-01334-5","DOIUrl":null,"url":null,"abstract":"<div><p>The ensemble learning algorithm is a statistical method that is unknown in HEA(s)'s prediction phase. The ensemble learning algorithm is used to check on the phase selection principles, utilizing a large experimental case study on 401 distinct HEAs, comprising 174 SS, 54 IM, and 173 SS + IM phases. Random forest(RF) has the highest accuracy compared with other ensemble \nlearning algorithms i.e. its certainty is about 10% higher than support-vector machines(SVM) and K-nearest neighbors(KNN) for allocating HEA(s). The validity and reliability of the proposed algorithms are announced as results of the paper. Therewith, findings show two main advantages to allocating HEAs: First deduction of decision trees and improving the carefulness, and second automating missing values. In addition, to check the practical accuracy of the machine learning results, the XRD results of the TiZrNbCrV, TiZrNbFeCr, and Ti ZrNbFeV \nalloys are presented. All alloys are in solid solution statues without any intermetallic phases. The practical results show the ensemble learning algorithms have suitable consistency in real conditions and can be a great help to design new high entropy alloys.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ensemble learning algorithms for prediction high entropy alloys phases\",\"authors\":\"Masoud Yousefi,&nbsp;Khosrow Rahmani,&nbsp;Masoud Rajabi,&nbsp;Ali Reyhani,&nbsp;Nayereh Asgari\",\"doi\":\"10.1007/s13370-025-01334-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ensemble learning algorithm is a statistical method that is unknown in HEA(s)'s prediction phase. The ensemble learning algorithm is used to check on the phase selection principles, utilizing a large experimental case study on 401 distinct HEAs, comprising 174 SS, 54 IM, and 173 SS + IM phases. Random forest(RF) has the highest accuracy compared with other ensemble \\nlearning algorithms i.e. its certainty is about 10% higher than support-vector machines(SVM) and K-nearest neighbors(KNN) for allocating HEA(s). The validity and reliability of the proposed algorithms are announced as results of the paper. Therewith, findings show two main advantages to allocating HEAs: First deduction of decision trees and improving the carefulness, and second automating missing values. In addition, to check the practical accuracy of the machine learning results, the XRD results of the TiZrNbCrV, TiZrNbFeCr, and Ti ZrNbFeV \\nalloys are presented. All alloys are in solid solution statues without any intermetallic phases. The practical results show the ensemble learning algorithms have suitable consistency in real conditions and can be a great help to design new high entropy alloys.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01334-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01334-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

集成学习算法是HEA(s)预测阶段未知的一种统计方法。集成学习算法用于检查相位选择原则,利用401个不同HEAs的大型实验案例研究,包括174个SS, 54个IM和173个SS + IM阶段。与其他集成学习算法相比,随机森林(RF)具有最高的准确性,即在分配HEA时,其确定性比支持向量机(SVM)和k近邻(KNN)高约10%。本文的研究结果表明了所提出算法的有效性和可靠性。因此,研究结果显示了分配HEAs的两个主要优势:首先是决策树的推导和提高了谨慎性,其次是丢失值的自动化。此外,为了验证机器学习结果的实用准确性,给出了TiZrNbCrV、tizrnbbfecr和Ti ZrNbFeV合金的XRD结果。所有合金都处于固溶体状态,没有金属间相。实际结果表明,集成学习算法在实际条件下具有良好的一致性,可以为设计新型高熵合金提供很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ensemble learning algorithms for prediction high entropy alloys phases

The ensemble learning algorithm is a statistical method that is unknown in HEA(s)'s prediction phase. The ensemble learning algorithm is used to check on the phase selection principles, utilizing a large experimental case study on 401 distinct HEAs, comprising 174 SS, 54 IM, and 173 SS + IM phases. Random forest(RF) has the highest accuracy compared with other ensemble learning algorithms i.e. its certainty is about 10% higher than support-vector machines(SVM) and K-nearest neighbors(KNN) for allocating HEA(s). The validity and reliability of the proposed algorithms are announced as results of the paper. Therewith, findings show two main advantages to allocating HEAs: First deduction of decision trees and improving the carefulness, and second automating missing values. In addition, to check the practical accuracy of the machine learning results, the XRD results of the TiZrNbCrV, TiZrNbFeCr, and Ti ZrNbFeV alloys are presented. All alloys are in solid solution statues without any intermetallic phases. The practical results show the ensemble learning algorithms have suitable consistency in real conditions and can be a great help to design new high entropy alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信