Alexandr Garbali, Jan de Gier, William Mead, Michael Wheeler
{"title":"半空间中六顶点模型的对称函数","authors":"Alexandr Garbali, Jan de Gier, William Mead, Michael Wheeler","doi":"10.1007/s00023-024-01484-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 7","pages":"2557 - 2624"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric Functions from the Six-Vertex Model in Half-Space\",\"authors\":\"Alexandr Garbali, Jan de Gier, William Mead, Michael Wheeler\",\"doi\":\"10.1007/s00023-024-01484-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 7\",\"pages\":\"2557 - 2624\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01484-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01484-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Symmetric Functions from the Six-Vertex Model in Half-Space
We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.