半空间中六顶点模型的对称函数

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Alexandr Garbali, Jan de Gier, William Mead, Michael Wheeler
{"title":"半空间中六顶点模型的对称函数","authors":"Alexandr Garbali,&nbsp;Jan de Gier,&nbsp;William Mead,&nbsp;Michael Wheeler","doi":"10.1007/s00023-024-01484-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 7","pages":"2557 - 2624"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric Functions from the Six-Vertex Model in Half-Space\",\"authors\":\"Alexandr Garbali,&nbsp;Jan de Gier,&nbsp;William Mead,&nbsp;Michael Wheeler\",\"doi\":\"10.1007/s00023-024-01484-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 7\",\"pages\":\"2557 - 2624\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01484-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01484-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有一般可积边界权值的半空间随机六顶点模型,并定义了两类多元有理对称函数。利用双行算子之间的交换关系,证明了这些函数的一个偏柯西恒等式。在柯西恒等式右边的某种退化中,我们得到了半象限中六顶点模型的配分函数,并给出了这个量的一个普氏公式。pfaffan是Kuperberg在他关于交替符号矩阵对称类的工作中得到的一个公式的直接推广。我们的一个对称函数族允许一个积分(残数和)公式,并利用它来推测对偶函数族的正交性。通过研究将积分公式简化为半线上(初始空的)非对称简单不相容过程的跃迁概率,得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric Functions from the Six-Vertex Model in Half-Space

We study the stochastic six-vertex model in half-space with generic integrable boundary weights, and define two families of multivariate rational symmetric functions. Using commutation relations between double-row operators, we prove a skew Cauchy identity of these functions. In a certain degeneration of the right-hand side of the Cauchy identity we obtain the partition function of the six-vertex model in a half-quadrant, and give a Pfaffian formula for this quantity. The Pfaffian is a direct generalization of a formula obtained by Kuperberg in his work on symmetry classes of alternating-sign matrices. One of our families of symmetric functions admits an integral (sum over residues) formula, and we use this to conjecture an orthogonality property of the dual family. We conclude by studying the reduction of our integral formula to transition probabilities of the (initially empty) asymmetric simple exclusion process on the half-line.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信