{"title":"基于图神经网络归纳能力和信息检索区域划分的页面排名估计","authors":"Fargana Abdullayeva, Suleyman Suleymanzade","doi":"10.3103/S0146411625700130","DOIUrl":null,"url":null,"abstract":"<p>one of the important features of information retrieval systems is ranking. Ranking performs the function of ranking search results based on relevance to the user’s query. Methods developed in state-of-the-art research still require multiple iterations. In this paper, we proposed to use zone partitioning strategies for computing web page rank parameters in retrieval systems, which implements iterative calculation for only some randomly selected subgraphs (zone). The zone approach is based on the idea to use multiple neural networks to classify rank data in graph-based structures. The crawled web pages are fragmented into three distinct zones. The core zone is used for training graph convolutional network, in this zone, the labels are known. It is covered with an undiscovered zone, where classifiers label node parameters. The most interesting part is the intersection zone, which represents the set of nodes and edges that belong to more than one undiscovered zone. The experiments show that the probability of classifying the true labels in the intersection zones via aggregating the results of multiple classifiers in some cases is higher than in undiscovered zones.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"59 2","pages":"150 - 163"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Page Ranks with Inductive Capability of Graph Neural Networks and Zone Partitioning in Information Retrieval\",\"authors\":\"Fargana Abdullayeva, Suleyman Suleymanzade\",\"doi\":\"10.3103/S0146411625700130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>one of the important features of information retrieval systems is ranking. Ranking performs the function of ranking search results based on relevance to the user’s query. Methods developed in state-of-the-art research still require multiple iterations. In this paper, we proposed to use zone partitioning strategies for computing web page rank parameters in retrieval systems, which implements iterative calculation for only some randomly selected subgraphs (zone). The zone approach is based on the idea to use multiple neural networks to classify rank data in graph-based structures. The crawled web pages are fragmented into three distinct zones. The core zone is used for training graph convolutional network, in this zone, the labels are known. It is covered with an undiscovered zone, where classifiers label node parameters. The most interesting part is the intersection zone, which represents the set of nodes and edges that belong to more than one undiscovered zone. The experiments show that the probability of classifying the true labels in the intersection zones via aggregating the results of multiple classifiers in some cases is higher than in undiscovered zones.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"59 2\",\"pages\":\"150 - 163\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411625700130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411625700130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Estimating Page Ranks with Inductive Capability of Graph Neural Networks and Zone Partitioning in Information Retrieval
one of the important features of information retrieval systems is ranking. Ranking performs the function of ranking search results based on relevance to the user’s query. Methods developed in state-of-the-art research still require multiple iterations. In this paper, we proposed to use zone partitioning strategies for computing web page rank parameters in retrieval systems, which implements iterative calculation for only some randomly selected subgraphs (zone). The zone approach is based on the idea to use multiple neural networks to classify rank data in graph-based structures. The crawled web pages are fragmented into three distinct zones. The core zone is used for training graph convolutional network, in this zone, the labels are known. It is covered with an undiscovered zone, where classifiers label node parameters. The most interesting part is the intersection zone, which represents the set of nodes and edges that belong to more than one undiscovered zone. The experiments show that the probability of classifying the true labels in the intersection zones via aggregating the results of multiple classifiers in some cases is higher than in undiscovered zones.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision