对形式为\(\lfloor n^c\rfloor\), \(\lfloor n^c\rfloor\) +1的连续无立方数

IF 0.7 Q2 MATHEMATICS
Pinthira Tangsupphathawat, Teerapat Srichan
{"title":"对形式为\\(\\lfloor n^c\\rfloor\\), \\(\\lfloor n^c\\rfloor\\) +1的连续无立方数","authors":"Pinthira Tangsupphathawat,&nbsp;Teerapat Srichan","doi":"10.1007/s13370-025-01351-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the existence of infinitely many consecutive cube-free numbers in Piatetski-Shapiro sequences. We prove that, for any fixed <span>\\(1&lt;c&lt;2\\)</span>, there exist infinitely many consecutive cube-free integers in Piatetski-Shapiro sequences.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On consecutive cube-free numbers of the form \\\\(\\\\lfloor n^c\\\\rfloor\\\\), \\\\(\\\\lfloor n^c\\\\rfloor\\\\)+1\",\"authors\":\"Pinthira Tangsupphathawat,&nbsp;Teerapat Srichan\",\"doi\":\"10.1007/s13370-025-01351-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the existence of infinitely many consecutive cube-free numbers in Piatetski-Shapiro sequences. We prove that, for any fixed <span>\\\\(1&lt;c&lt;2\\\\)</span>, there exist infinitely many consecutive cube-free integers in Piatetski-Shapiro sequences.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01351-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01351-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了Piatetski-Shapiro序列中存在无穷多个连续无立方数。证明了对于任意固定\(1<c<2\),在Piatetski-Shapiro序列中存在无穷多个连续的无立方整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On consecutive cube-free numbers of the form \(\lfloor n^c\rfloor\), \(\lfloor n^c\rfloor\)+1

In this paper, we consider the existence of infinitely many consecutive cube-free numbers in Piatetski-Shapiro sequences. We prove that, for any fixed \(1<c<2\), there exist infinitely many consecutive cube-free integers in Piatetski-Shapiro sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信