{"title":"结构健康监测中有限元模型更新中的模型简化和子结构技术研究进展","authors":"Partha Sengupta, Subrata Chakraborty","doi":"10.1007/s11831-025-10231-w","DOIUrl":null,"url":null,"abstract":"<div><p>The model reduction technique (MRT) is an integral part of the finite element model updating (FEMU) approach to address the issue of incompleteness in measurement. It basically condenses the size of a finite element (FE) model to fit with the available responses at limited degrees of freedom. The developments in MRTs and substructure coupling for structural health monitoring (SHM) applications have been enormous. The MRTs are partly discussed in the review articles on FEMU. However, no article is dedicated explicitly to MRTs in SHM applications. Thus, a review article on MRTs will likely augment the state-of-the-art developments of MRTs in FEMU for SHM applications. This review article synthesises the growing literature on different variants of MRTs in time and frequency domains. In doing so, the fundamentals of MRT, salient modifications on the basic MRTs to ease the computational efforts and understanding of its implementation and related developments are presented first. Further, the developments of various substructure coupling techniques used to reduce the order of large FE models are presented. The authors’ recently proposed improved MRTs are also briefly presented. Finally, the prospects and challenges in MRT and substructuring techniques are critically discussed. The review, in general, reveals that the developments in MRTs are gaining importance due to their excellent capability of handling incomplete measurements, indicating the relevance of reviewing the subject from time to time to update the latest developments.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 5","pages":"3031 - 3062"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A State-of-the-Art Review on Model Reduction and Substructuring Techniques in Finite Element Model Updating for Structural Health Monitoring Applications\",\"authors\":\"Partha Sengupta, Subrata Chakraborty\",\"doi\":\"10.1007/s11831-025-10231-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The model reduction technique (MRT) is an integral part of the finite element model updating (FEMU) approach to address the issue of incompleteness in measurement. It basically condenses the size of a finite element (FE) model to fit with the available responses at limited degrees of freedom. The developments in MRTs and substructure coupling for structural health monitoring (SHM) applications have been enormous. The MRTs are partly discussed in the review articles on FEMU. However, no article is dedicated explicitly to MRTs in SHM applications. Thus, a review article on MRTs will likely augment the state-of-the-art developments of MRTs in FEMU for SHM applications. This review article synthesises the growing literature on different variants of MRTs in time and frequency domains. In doing so, the fundamentals of MRT, salient modifications on the basic MRTs to ease the computational efforts and understanding of its implementation and related developments are presented first. Further, the developments of various substructure coupling techniques used to reduce the order of large FE models are presented. The authors’ recently proposed improved MRTs are also briefly presented. Finally, the prospects and challenges in MRT and substructuring techniques are critically discussed. The review, in general, reveals that the developments in MRTs are gaining importance due to their excellent capability of handling incomplete measurements, indicating the relevance of reviewing the subject from time to time to update the latest developments.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 5\",\"pages\":\"3031 - 3062\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-025-10231-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10231-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A State-of-the-Art Review on Model Reduction and Substructuring Techniques in Finite Element Model Updating for Structural Health Monitoring Applications
The model reduction technique (MRT) is an integral part of the finite element model updating (FEMU) approach to address the issue of incompleteness in measurement. It basically condenses the size of a finite element (FE) model to fit with the available responses at limited degrees of freedom. The developments in MRTs and substructure coupling for structural health monitoring (SHM) applications have been enormous. The MRTs are partly discussed in the review articles on FEMU. However, no article is dedicated explicitly to MRTs in SHM applications. Thus, a review article on MRTs will likely augment the state-of-the-art developments of MRTs in FEMU for SHM applications. This review article synthesises the growing literature on different variants of MRTs in time and frequency domains. In doing so, the fundamentals of MRT, salient modifications on the basic MRTs to ease the computational efforts and understanding of its implementation and related developments are presented first. Further, the developments of various substructure coupling techniques used to reduce the order of large FE models are presented. The authors’ recently proposed improved MRTs are also briefly presented. Finally, the prospects and challenges in MRT and substructuring techniques are critically discussed. The review, in general, reveals that the developments in MRTs are gaining importance due to their excellent capability of handling incomplete measurements, indicating the relevance of reviewing the subject from time to time to update the latest developments.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.