最大曲面插值

IF 0.7 4区 数学 Q3 MATHEMATICS
Rukmini Dey, Rahul Kumar Singh
{"title":"最大曲面插值","authors":"Rukmini Dey,&nbsp;Rahul Kumar Singh","doi":"10.1134/S1234567825020041","DOIUrl":null,"url":null,"abstract":"<p> In this article, we use the inverse function theorem for Banach spaces to interpolate a given real analytic spacelike curve <span>\\(a\\)</span> in the Lorentz–Minkowski space <span>\\(\\mathbb{L}^3\\)</span> to another real analytic spacelike curve <span>\\(c\\)</span>, which is “close” enough to <span>\\(a\\)</span> in a certain sense, by constructing a maximal surface containing them. Throughout this study, the Björling problem and Schwarz’s solution to it play pivotal roles. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 2","pages":"126 - 141"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation by Maximal Surfaces\",\"authors\":\"Rukmini Dey,&nbsp;Rahul Kumar Singh\",\"doi\":\"10.1134/S1234567825020041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this article, we use the inverse function theorem for Banach spaces to interpolate a given real analytic spacelike curve <span>\\\\(a\\\\)</span> in the Lorentz–Minkowski space <span>\\\\(\\\\mathbb{L}^3\\\\)</span> to another real analytic spacelike curve <span>\\\\(c\\\\)</span>, which is “close” enough to <span>\\\\(a\\\\)</span> in a certain sense, by constructing a maximal surface containing them. Throughout this study, the Björling problem and Schwarz’s solution to it play pivotal roles. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 2\",\"pages\":\"126 - 141\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825020041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825020041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用Banach空间的反函数定理,通过构造包含它们的极大曲面,将洛伦兹-闵可夫斯基空间\(\mathbb{L}^3\)中给定的实解析类空间曲线\(a\)插值到另一条在某种意义上足够“接近”\(a\)的实解析类空间曲线\(c\)。在整个研究中,Björling问题和Schwarz的解决方案发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation by Maximal Surfaces

In this article, we use the inverse function theorem for Banach spaces to interpolate a given real analytic spacelike curve \(a\) in the Lorentz–Minkowski space \(\mathbb{L}^3\) to another real analytic spacelike curve \(c\), which is “close” enough to \(a\) in a certain sense, by constructing a maximal surface containing them. Throughout this study, the Björling problem and Schwarz’s solution to it play pivotal roles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信