具有简单勒贝格谱的酉算子的张量分解

IF 0.7 4区 数学 Q3 MATHEMATICS
Valerii Ryzhikov
{"title":"具有简单勒贝格谱的酉算子的张量分解","authors":"Valerii Ryzhikov","doi":"10.1134/S1234567825020090","DOIUrl":null,"url":null,"abstract":"<p> We show that for all <span>\\(n,p&gt;1\\)</span>, there exists a unitary operator <span>\\(U\\)</span> such that the tensor product <span>\\(U\\otimes U^p\\otimes\\dots\\otimes U^{p^{n-1}}\\)</span> is a unitary operator with simple Lebesgue spectrum. Moreover, there exists an ergodic automorphism <span>\\(T\\)</span> such that the spectrum of <span>\\(T\\odot T\\)</span> is simple, while the spectrum of <span>\\(T\\otimes T\\otimes T\\)</span> is absolutely continuous. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 2","pages":"218 - 220"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor Factorizations of a Unitary Operator with Simple Lebesgue Spectrum\",\"authors\":\"Valerii Ryzhikov\",\"doi\":\"10.1134/S1234567825020090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We show that for all <span>\\\\(n,p&gt;1\\\\)</span>, there exists a unitary operator <span>\\\\(U\\\\)</span> such that the tensor product <span>\\\\(U\\\\otimes U^p\\\\otimes\\\\dots\\\\otimes U^{p^{n-1}}\\\\)</span> is a unitary operator with simple Lebesgue spectrum. Moreover, there exists an ergodic automorphism <span>\\\\(T\\\\)</span> such that the spectrum of <span>\\\\(T\\\\odot T\\\\)</span> is simple, while the spectrum of <span>\\\\(T\\\\otimes T\\\\otimes T\\\\)</span> is absolutely continuous. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 2\",\"pages\":\"218 - 220\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825020090\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825020090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了对于所有\(n,p>1\),存在一个酉算子\(U\),使得张量积\(U\otimes U^p\otimes\dots\otimes U^{p^{n-1}}\)是一个具有简单勒贝格谱的酉算子。此外,存在一个遍历自同构\(T\),使得\(T\odot T\)的谱是简单的,而\(T\otimes T\otimes T\)的谱是绝对连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor Factorizations of a Unitary Operator with Simple Lebesgue Spectrum

We show that for all \(n,p>1\), there exists a unitary operator \(U\) such that the tensor product \(U\otimes U^p\otimes\dots\otimes U^{p^{n-1}}\) is a unitary operator with simple Lebesgue spectrum. Moreover, there exists an ergodic automorphism \(T\) such that the spectrum of \(T\odot T\) is simple, while the spectrum of \(T\otimes T\otimes T\) is absolutely continuous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信