椭圆自旋Calogero-Moser模型的场模拟:Lax对和运动方程

IF 0.7 4区 数学 Q3 MATHEMATICS
Andrei Zotov
{"title":"椭圆自旋Calogero-Moser模型的场模拟:Lax对和运动方程","authors":"Andrei Zotov","doi":"10.1134/S1234567825020053","DOIUrl":null,"url":null,"abstract":"<p> A Lax pair for the field analogue of the classical spin elliptic Calogero–Moser model is proposed. Namely, using the previously known Lax matrix, we suggest an ansatz for the accompanying matrix. The presented construction is valid when the matrix of spin variables <span>\\({\\mathcal S}\\in\\operatorname{Mat}(N,\\mathbb C)\\)</span> satisfies the condition <span>\\({\\mathcal S}^2=c_0{\\mathcal S}\\)</span> with some constant <span>\\(c_0\\in\\mathbb C\\)</span>. It is shown that the Lax pair satisfies the Zakharov–Shabat equation with unwanted term, thus providing equations of motion on the unreduced phase space. The unwanted term vanishes after additional reduction. In the special case <span>\\(\\operatorname{rank}(\\mathcal S)=1\\)</span>, we show that the reduction provides the Lax pair of the spinless field Calogero–Moser model obtained earlier by Akhmetshin, Krichever, and Volvovski. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 2","pages":"142 - 158"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Field Analogue of the Elliptic Spin Calogero–Moser Model: Lax Pair and Equations of Motion\",\"authors\":\"Andrei Zotov\",\"doi\":\"10.1134/S1234567825020053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> A Lax pair for the field analogue of the classical spin elliptic Calogero–Moser model is proposed. Namely, using the previously known Lax matrix, we suggest an ansatz for the accompanying matrix. The presented construction is valid when the matrix of spin variables <span>\\\\({\\\\mathcal S}\\\\in\\\\operatorname{Mat}(N,\\\\mathbb C)\\\\)</span> satisfies the condition <span>\\\\({\\\\mathcal S}^2=c_0{\\\\mathcal S}\\\\)</span> with some constant <span>\\\\(c_0\\\\in\\\\mathbb C\\\\)</span>. It is shown that the Lax pair satisfies the Zakharov–Shabat equation with unwanted term, thus providing equations of motion on the unreduced phase space. The unwanted term vanishes after additional reduction. In the special case <span>\\\\(\\\\operatorname{rank}(\\\\mathcal S)=1\\\\)</span>, we show that the reduction provides the Lax pair of the spinless field Calogero–Moser model obtained earlier by Akhmetshin, Krichever, and Volvovski. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 2\",\"pages\":\"142 - 158\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825020053\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825020053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一个用于经典自旋椭圆卡罗伽罗-莫泽模型场模拟的Lax对。也就是说,使用先前已知的Lax矩阵,我们提出了伴随矩阵的一个ansatz。当自旋变量的矩阵\({\mathcal S}\in\operatorname{Mat}(N,\mathbb C)\)满足条件\({\mathcal S}^2=c_0{\mathcal S}\)并有一定常数\(c_0\in\mathbb C\)时,本文的构造是有效的。证明了Lax对满足带多余项的Zakharov-Shabat方程,从而给出了未约化相空间上的运动方程。不需要的项在进一步约简后就消失了。在特殊情况\(\operatorname{rank}(\mathcal S)=1\)中,我们证明了这种约化提供了先前由Akhmetshin, krichhever和Volvovski得到的无自旋场Calogero-Moser模型的Lax对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Field Analogue of the Elliptic Spin Calogero–Moser Model: Lax Pair and Equations of Motion

A Lax pair for the field analogue of the classical spin elliptic Calogero–Moser model is proposed. Namely, using the previously known Lax matrix, we suggest an ansatz for the accompanying matrix. The presented construction is valid when the matrix of spin variables \({\mathcal S}\in\operatorname{Mat}(N,\mathbb C)\) satisfies the condition \({\mathcal S}^2=c_0{\mathcal S}\) with some constant \(c_0\in\mathbb C\). It is shown that the Lax pair satisfies the Zakharov–Shabat equation with unwanted term, thus providing equations of motion on the unreduced phase space. The unwanted term vanishes after additional reduction. In the special case \(\operatorname{rank}(\mathcal S)=1\), we show that the reduction provides the Lax pair of the spinless field Calogero–Moser model obtained earlier by Akhmetshin, Krichever, and Volvovski.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信