分布式能源系统负荷平衡多目标优化模型

Q2 Energy
Zhuo Wang, Yuchen Luo, Wei Wu, Lei Cao, Zhun Li
{"title":"分布式能源系统负荷平衡多目标优化模型","authors":"Zhuo Wang,&nbsp;Yuchen Luo,&nbsp;Wei Wu,&nbsp;Lei Cao,&nbsp;Zhun Li","doi":"10.1186/s42162-025-00526-4","DOIUrl":null,"url":null,"abstract":"<div><p>When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00526-4","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization models for power load balancing in distributed energy systems\",\"authors\":\"Zhuo Wang,&nbsp;Yuchen Luo,&nbsp;Wei Wu,&nbsp;Lei Cao,&nbsp;Zhun Li\",\"doi\":\"10.1186/s42162-025-00526-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00526-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00526-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00526-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在智能电网可靠性和能量均衡问题上,多目标能量优化是必须解决的问题。需求侧和发电侧的不确定性和多个竞争准则使得多目标优化变得困难。因此,选择一个能够解决与负载和分散能源相关的调度问题的模型是必要的。本研究详细介绍了利用可再生电力优化SPG运营成本和污染物排放的概念。可再生能源,如太阳能光伏和风能,本质上是不可预测的,并且会发生变化。可再生能源的不确定性是通过使用概率密度函数(PDF)来处理的。为了解决多目标优化(MOCO)问题,建立了基于MOCO方法的模型。采用多目标深度强化学习(DRL)方法对能量管理与控制的基准模型进行了验证。根据结果,MOCO降低了15%的运营成本和8%的环境排放。结果表明,与比较模型相比,本文提出的模型更好地达到了目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization models for power load balancing in distributed energy systems

When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信