Fadhil Khadoum Alhousni, Samuel Chukwujindu Nwokolo, Edson L. Meyer, Theyab R. Alsenani, Humaid Abdullah Alhinai, Chinedu Christian Ahia, Paul C. Okonkwo, Yaareb Elias Ahmed
{"title":"基于多尺度计算流体动力学和机器学习的浮式光伏系统水动力优化","authors":"Fadhil Khadoum Alhousni, Samuel Chukwujindu Nwokolo, Edson L. Meyer, Theyab R. Alsenani, Humaid Abdullah Alhinai, Chinedu Christian Ahia, Paul C. Okonkwo, Yaareb Elias Ahmed","doi":"10.1186/s42162-025-00567-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new and multidisciplinary systematic analysis of floating photovoltaic (FPV) systems that integrates recent advances in computational modelling and intelligent optimization to address persistent issues with performance, hydrodynamics, and adaptability. The review is organized according to five main goals: (i) to publish experimental and empirical results in FPV literature; (ii) to develop a unified computational approach that combines CFD and ML; (iii) to assess system improvements through multi-scale hydrodynamic modelling and AI-driven adjustments; (iv) to introduce the Bidirectional Conceptual Feedback Loop (BCFL) as a dynamic optimization model; and (v) to develop a scalable, climate-resilient FPV model for the global energy transition. Scopus, Web of Science, Google Scholar, ScienceDirect, SpringerLink, and Taylor & Francis were the sources of 404 research publications in all. 189 high-impact publications were found through a careful curation of online databases, with a focus on computational innovations, machine learning (ML)-based optimization, and hydrodynamic analysis. Following a strict inclusion and exclusion process and using Mendeley reference management software to remove duplicate records during the screening stage, authors evaluated a collection of high-impact literature, technology developments, and verified empirical data related to mooring systems, wave-wind interactions, structural stability, predictive analytics, and digital twin environments. According to the synthesis, real-time adaptation, predictive defect detection, and optimized energy yield are made possible by the clever fusion of CFD and ML, especially in dynamic aquatic environments. In order to meet the demands of both climate resilience and the scaling of renewable energy, FPV platforms must become cyber-physical, self-optimizing systems. This paper introduces a paradigm shift by using a methodical and theoretical approach to review and incorporate empirical research, advanced simulation, and AI-driven system intelligence. Future FPV development can be revolutionized by the proposed BCFL paradigm, which makes it easier to move from isolated innovation to integrative, flexible, and globally replicable FPV system design.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00567-9","citationCount":"0","resultStr":"{\"title\":\"Multi-scale computational fluid dynamics and machine learning integration for hydrodynamic optimization of floating photovoltaic systems\",\"authors\":\"Fadhil Khadoum Alhousni, Samuel Chukwujindu Nwokolo, Edson L. Meyer, Theyab R. Alsenani, Humaid Abdullah Alhinai, Chinedu Christian Ahia, Paul C. Okonkwo, Yaareb Elias Ahmed\",\"doi\":\"10.1186/s42162-025-00567-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a new and multidisciplinary systematic analysis of floating photovoltaic (FPV) systems that integrates recent advances in computational modelling and intelligent optimization to address persistent issues with performance, hydrodynamics, and adaptability. The review is organized according to five main goals: (i) to publish experimental and empirical results in FPV literature; (ii) to develop a unified computational approach that combines CFD and ML; (iii) to assess system improvements through multi-scale hydrodynamic modelling and AI-driven adjustments; (iv) to introduce the Bidirectional Conceptual Feedback Loop (BCFL) as a dynamic optimization model; and (v) to develop a scalable, climate-resilient FPV model for the global energy transition. Scopus, Web of Science, Google Scholar, ScienceDirect, SpringerLink, and Taylor & Francis were the sources of 404 research publications in all. 189 high-impact publications were found through a careful curation of online databases, with a focus on computational innovations, machine learning (ML)-based optimization, and hydrodynamic analysis. Following a strict inclusion and exclusion process and using Mendeley reference management software to remove duplicate records during the screening stage, authors evaluated a collection of high-impact literature, technology developments, and verified empirical data related to mooring systems, wave-wind interactions, structural stability, predictive analytics, and digital twin environments. According to the synthesis, real-time adaptation, predictive defect detection, and optimized energy yield are made possible by the clever fusion of CFD and ML, especially in dynamic aquatic environments. In order to meet the demands of both climate resilience and the scaling of renewable energy, FPV platforms must become cyber-physical, self-optimizing systems. This paper introduces a paradigm shift by using a methodical and theoretical approach to review and incorporate empirical research, advanced simulation, and AI-driven system intelligence. Future FPV development can be revolutionized by the proposed BCFL paradigm, which makes it easier to move from isolated innovation to integrative, flexible, and globally replicable FPV system design.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00567-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00567-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00567-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了浮动光伏(FPV)系统的一个新的多学科系统分析,集成了计算建模和智能优化的最新进展,以解决性能,流体动力学和适应性方面的持续问题。本次综述的组织有五个主要目标:(i)发表FPV文献中的实验和实证结果;(ii)开发结合CFD和ML的统一计算方法;(iii)通过多尺度流体动力学建模和人工智能驱动的调整评估系统改进;(iv)引入双向概念反馈环(BCFL)作为动态优化模型;(五)为全球能源转型开发一个可扩展的、具有气候适应性的FPV模式。Scopus、Web of Science、b谷歌Scholar、ScienceDirect、SpringerLink和Taylor & Francis总共是404篇研究论文的来源。通过对在线数据库的仔细整理,发现了189篇高影响力的出版物,重点是计算创新、基于机器学习(ML)的优化和流体动力学分析。经过严格的纳入和排除过程,并使用Mendeley参考管理软件在筛选阶段删除重复记录,作者评估了一系列具有高影响力的文献、技术发展,并验证了与系泊系统、波浪-风相互作用、结构稳定性、预测分析和数字孪生环境相关的经验数据。在此基础上,通过CFD和ML的巧妙融合,实现了实时自适应、预测缺陷检测和优化产能,特别是在动态水生环境中。为了满足气候适应能力和可再生能源规模的需求,光伏平台必须成为网络物理、自我优化的系统。本文通过使用系统和理论方法来回顾和结合实证研究、高级模拟和人工智能驱动的系统智能,介绍了一种范式转变。未来的FPV发展可以通过提出的BCFL范式进行革命性的变革,这使得它更容易从孤立的创新转向集成的、灵活的、全球可复制的FPV系统设计。
Multi-scale computational fluid dynamics and machine learning integration for hydrodynamic optimization of floating photovoltaic systems
This paper presents a new and multidisciplinary systematic analysis of floating photovoltaic (FPV) systems that integrates recent advances in computational modelling and intelligent optimization to address persistent issues with performance, hydrodynamics, and adaptability. The review is organized according to five main goals: (i) to publish experimental and empirical results in FPV literature; (ii) to develop a unified computational approach that combines CFD and ML; (iii) to assess system improvements through multi-scale hydrodynamic modelling and AI-driven adjustments; (iv) to introduce the Bidirectional Conceptual Feedback Loop (BCFL) as a dynamic optimization model; and (v) to develop a scalable, climate-resilient FPV model for the global energy transition. Scopus, Web of Science, Google Scholar, ScienceDirect, SpringerLink, and Taylor & Francis were the sources of 404 research publications in all. 189 high-impact publications were found through a careful curation of online databases, with a focus on computational innovations, machine learning (ML)-based optimization, and hydrodynamic analysis. Following a strict inclusion and exclusion process and using Mendeley reference management software to remove duplicate records during the screening stage, authors evaluated a collection of high-impact literature, technology developments, and verified empirical data related to mooring systems, wave-wind interactions, structural stability, predictive analytics, and digital twin environments. According to the synthesis, real-time adaptation, predictive defect detection, and optimized energy yield are made possible by the clever fusion of CFD and ML, especially in dynamic aquatic environments. In order to meet the demands of both climate resilience and the scaling of renewable energy, FPV platforms must become cyber-physical, self-optimizing systems. This paper introduces a paradigm shift by using a methodical and theoretical approach to review and incorporate empirical research, advanced simulation, and AI-driven system intelligence. Future FPV development can be revolutionized by the proposed BCFL paradigm, which makes it easier to move from isolated innovation to integrative, flexible, and globally replicable FPV system design.