{"title":"磁场的泰勒不稳定性是Ap星56 Ari周期变化的可能原因","authors":"I. S. Potravnov, L. L. Kitchatinov","doi":"10.1134/S1063772925701872","DOIUrl":null,"url":null,"abstract":"<p>The physical mechanism responsible for the photometric period changes in chemically peculiar star 56 Ari was searched. It was previously shown that rate of the star’s period increase is several orders of magnitude larger than the rates expected from the evolutionary changes of the angular momentum or due to magnetic braking. Also no secular changes were detected in the surface structure or visibility of chemical spots which are responsible for the rotational modulation of stellar brightness. We hypothesize that period changes in 56 Ari are caused by the drift of surface magnetic and associated abundance structures as a result of the kink-type (Tayler) instability of the background magnetic field in the radiative zone of the star. Results of the numerical simulation presented in the paper yield growth and drift rates of the most rapidly developing non-axisymmetric mode of the instability, consistent with the observed rate of period changes in 56 Ari. The surface geometry of the 56 Ari magnetic field is also reproduces in the calculations. The proposed mechanism may also be used to explain the character of period changes in other Ap/Bp stars demonstrating such an effect.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"69 6","pages":"500 - 509"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tayler Instability of Magnetic Field as the Possible Reason for the Period Changes in Ap Star 56 Ari\",\"authors\":\"I. S. Potravnov, L. L. Kitchatinov\",\"doi\":\"10.1134/S1063772925701872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The physical mechanism responsible for the photometric period changes in chemically peculiar star 56 Ari was searched. It was previously shown that rate of the star’s period increase is several orders of magnitude larger than the rates expected from the evolutionary changes of the angular momentum or due to magnetic braking. Also no secular changes were detected in the surface structure or visibility of chemical spots which are responsible for the rotational modulation of stellar brightness. We hypothesize that period changes in 56 Ari are caused by the drift of surface magnetic and associated abundance structures as a result of the kink-type (Tayler) instability of the background magnetic field in the radiative zone of the star. Results of the numerical simulation presented in the paper yield growth and drift rates of the most rapidly developing non-axisymmetric mode of the instability, consistent with the observed rate of period changes in 56 Ari. The surface geometry of the 56 Ari magnetic field is also reproduces in the calculations. The proposed mechanism may also be used to explain the character of period changes in other Ap/Bp stars demonstrating such an effect.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"69 6\",\"pages\":\"500 - 509\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772925701872\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772925701872","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Tayler Instability of Magnetic Field as the Possible Reason for the Period Changes in Ap Star 56 Ari
The physical mechanism responsible for the photometric period changes in chemically peculiar star 56 Ari was searched. It was previously shown that rate of the star’s period increase is several orders of magnitude larger than the rates expected from the evolutionary changes of the angular momentum or due to magnetic braking. Also no secular changes were detected in the surface structure or visibility of chemical spots which are responsible for the rotational modulation of stellar brightness. We hypothesize that period changes in 56 Ari are caused by the drift of surface magnetic and associated abundance structures as a result of the kink-type (Tayler) instability of the background magnetic field in the radiative zone of the star. Results of the numerical simulation presented in the paper yield growth and drift rates of the most rapidly developing non-axisymmetric mode of the instability, consistent with the observed rate of period changes in 56 Ari. The surface geometry of the 56 Ari magnetic field is also reproduces in the calculations. The proposed mechanism may also be used to explain the character of period changes in other Ap/Bp stars demonstrating such an effect.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.