图代数中精确分裂对上同调的比较

IF 0.5 4区 数学 Q3 MATHEMATICS
Sulakhana Chowdhury, Geetha Thangavelu
{"title":"图代数中精确分裂对上同调的比较","authors":"Sulakhana Chowdhury,&nbsp;Geetha Thangavelu","doi":"10.1007/s00013-025-02127-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in <i>A</i>-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"79 - 92"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing cohomology via exact split pairs in diagram algebras\",\"authors\":\"Sulakhana Chowdhury,&nbsp;Geetha Thangavelu\",\"doi\":\"10.1007/s00013-025-02127-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in <i>A</i>-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"79 - 92\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02127-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02127-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了图代数的模的范畴与其输入代数的模的范畴之间的上同调性。我们的主要结果建立了这两个范畴之间的精确分裂对的充分条件,类似于diacca和Koenig的工作(J Pure applied Algebra 212:471-485, 2008)。具体地说,我们证明了A-Brauer代数、切环Brauer代数和壁Brauer代数中精确分裂对的存在性,以及它们各自的输入代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparing cohomology via exact split pairs in diagram algebras

Comparing cohomology via exact split pairs in diagram algebras

In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in A-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信