{"title":"图代数中精确分裂对上同调的比较","authors":"Sulakhana Chowdhury, Geetha Thangavelu","doi":"10.1007/s00013-025-02127-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in <i>A</i>-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"79 - 92"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing cohomology via exact split pairs in diagram algebras\",\"authors\":\"Sulakhana Chowdhury, Geetha Thangavelu\",\"doi\":\"10.1007/s00013-025-02127-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in <i>A</i>-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"79 - 92\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02127-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02127-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文比较了图代数的模的范畴与其输入代数的模的范畴之间的上同调性。我们的主要结果建立了这两个范畴之间的精确分裂对的充分条件,类似于diacca和Koenig的工作(J Pure applied Algebra 212:471-485, 2008)。具体地说,我们证明了A-Brauer代数、切环Brauer代数和壁Brauer代数中精确分裂对的存在性,以及它们各自的输入代数。
Comparing cohomology via exact split pairs in diagram algebras
In this article, we compare the cohomology between the categories of modules of the diagram algebras and the categories of modules of its input algebras. Our main result establishes a sufficient condition for exact split pairs between these two categories, analogous to a work by Diracca and Koenig (J Pure Appl Algebra 212:471–485, 2008). To be precise, we prove the existence of the exact split pairs in A-Brauer algebras, cyclotomic Brauer algebras, and walled Brauer algebras with their respective input algebras.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.