指数丢番图方程的连接 \({\mathbb {Q}}\)

IF 0.4 4区 数学 Q1 Arts and Humanities
Mihai Prunescu
{"title":"指数丢番图方程的连接 \\({\\mathbb {Q}}\\)","authors":"Mihai Prunescu","doi":"10.1007/s00153-024-00960-3","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper of the author it was shown that the question whether systems of exponential diophantine equations are solvable in <span>\\({\\mathbb {Q}}\\)</span> is undecidable. Now we show that the solvability of a conjunction of exponential diophantine equations in <span>\\({\\mathbb {Q}}\\)</span> is equivalent to the solvability of just one such equation. It follows that the problem whether an exponential diophantine equation has solutions in <span>\\({\\mathbb {Q}}\\)</span> is undecidable. We also show that two particular forms of exponential diophantine equations are undecidable. \n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 5-6","pages":"699 - 704"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjunctions of exponential diophantine equations over \\\\({\\\\mathbb {Q}}\\\\)\",\"authors\":\"Mihai Prunescu\",\"doi\":\"10.1007/s00153-024-00960-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a previous paper of the author it was shown that the question whether systems of exponential diophantine equations are solvable in <span>\\\\({\\\\mathbb {Q}}\\\\)</span> is undecidable. Now we show that the solvability of a conjunction of exponential diophantine equations in <span>\\\\({\\\\mathbb {Q}}\\\\)</span> is equivalent to the solvability of just one such equation. It follows that the problem whether an exponential diophantine equation has solutions in <span>\\\\({\\\\mathbb {Q}}\\\\)</span> is undecidable. We also show that two particular forms of exponential diophantine equations are undecidable. \\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"64 5-6\",\"pages\":\"699 - 704\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00960-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00960-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在作者以前的一篇文章中,证明了指数丢番图方程组在\({\mathbb {Q}}\)中是否可解的问题是不可判定的。现在我们证明了\({\mathbb {Q}}\)中指数丢色图方程的结合的可解性等价于一个这样的方程的可解性。由此可见,指数丢芬图方程在\({\mathbb {Q}}\)中是否有解的问题是不可判定的。我们还证明了指数丢色图方程的两种特殊形式是不可定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conjunctions of exponential diophantine equations over \({\mathbb {Q}}\)

In a previous paper of the author it was shown that the question whether systems of exponential diophantine equations are solvable in \({\mathbb {Q}}\) is undecidable. Now we show that the solvability of a conjunction of exponential diophantine equations in \({\mathbb {Q}}\) is equivalent to the solvability of just one such equation. It follows that the problem whether an exponential diophantine equation has solutions in \({\mathbb {Q}}\) is undecidable. We also show that two particular forms of exponential diophantine equations are undecidable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信