Schrödinger-type抽象Wiener空间上Weyl对交织的半群

IF 1.6 3区 数学 Q1 MATHEMATICS
Oleh Lopushansky
{"title":"Schrödinger-type抽象Wiener空间上Weyl对交织的半群","authors":"Oleh Lopushansky","doi":"10.1007/s13324-025-01108-z","DOIUrl":null,"url":null,"abstract":"<div><p>It is proven that Schrödinger-type problem <span>\\(w'_t=\\text {i}\\mathfrak {A} w\\)</span>, <span>\\(w(0)=f\\)</span>, <span>\\({(t&gt;0)}\\)</span> in the Gaussian Hilbert space <span>\\(L^2_\\mathbb {C}(X,\\mathcal {B},\\gamma )\\)</span> has the unique solution <span>\\({e}^{\\text {i}t\\mathfrak {A}}f=\\frac{1}{\\sqrt{4\\pi t}}{\\mathop {\\mathbb {E}}}_xe ^{-\\frac{1}{4t}\\Vert x\\Vert _X^2}\\mathcal {W}_{\\text {i}x}f\\)</span>, where the semigroup <span>\\({e}^{\\text {i}t\\mathfrak {A}}\\)</span> is irreducible-intertwined via Weyl pairs <span>\\(\\left\\{ \\mathcal {W}_{\\text {i}x}:x\\in X\\right\\} \\)</span> with the shift and multiplication coordinate groups on the space <span>\\(\\mathcal {H}^2_\\mathbb {C}\\)</span> of Hilbert-Schmidt analytic functionals on <span>\\({H\\oplus \\text {i}H}\\)</span>. The expectation <span>\\({\\mathop {\\mathbb {E}}}f={\\int f\\,d\\gamma }\\)</span> is defined by Gaussian measure <span>\\(\\gamma \\)</span> on a real separable Banach space <i>X</i>, using Gross’s theory of an abstract Wiener space <span>\\(\\jmath :H\\looparrowright X\\)</span> with the reproducing Hilbert space <i>H</i>. It is established the explicit formula for Hamiltonian <span>\\(\\mathfrak {A}\\)</span> in the form of a closure of sums <span>\\({\\sum [\\mathfrak {h}_2(\\phi _j)+\\mathbb {1}_j]}\\)</span> with the 2nd-degree Hermite polynomial <span>\\(\\mathfrak {h}_2\\)</span> from Gaussian variables <span>\\(\\phi _j\\)</span> and number operators <span>\\(\\mathbb {1}_j\\)</span> generated by the basis <span>\\((\\mathfrak {e}_j)\\subset H\\)</span> in the probability space <span>\\((X,\\mathcal {B},\\gamma )\\)</span> with Borel’s field <span>\\(\\mathcal {B}\\)</span> created by <span>\\(\\jmath \\)</span>. The Jackson inequalities with explicit constants for best approximations of <span>\\(\\mathfrak {A}\\)</span> are established.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01108-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Schrödinger-type semigroups intertwined by Weyl pairs on abstract Wiener spaces\",\"authors\":\"Oleh Lopushansky\",\"doi\":\"10.1007/s13324-025-01108-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is proven that Schrödinger-type problem <span>\\\\(w'_t=\\\\text {i}\\\\mathfrak {A} w\\\\)</span>, <span>\\\\(w(0)=f\\\\)</span>, <span>\\\\({(t&gt;0)}\\\\)</span> in the Gaussian Hilbert space <span>\\\\(L^2_\\\\mathbb {C}(X,\\\\mathcal {B},\\\\gamma )\\\\)</span> has the unique solution <span>\\\\({e}^{\\\\text {i}t\\\\mathfrak {A}}f=\\\\frac{1}{\\\\sqrt{4\\\\pi t}}{\\\\mathop {\\\\mathbb {E}}}_xe ^{-\\\\frac{1}{4t}\\\\Vert x\\\\Vert _X^2}\\\\mathcal {W}_{\\\\text {i}x}f\\\\)</span>, where the semigroup <span>\\\\({e}^{\\\\text {i}t\\\\mathfrak {A}}\\\\)</span> is irreducible-intertwined via Weyl pairs <span>\\\\(\\\\left\\\\{ \\\\mathcal {W}_{\\\\text {i}x}:x\\\\in X\\\\right\\\\} \\\\)</span> with the shift and multiplication coordinate groups on the space <span>\\\\(\\\\mathcal {H}^2_\\\\mathbb {C}\\\\)</span> of Hilbert-Schmidt analytic functionals on <span>\\\\({H\\\\oplus \\\\text {i}H}\\\\)</span>. The expectation <span>\\\\({\\\\mathop {\\\\mathbb {E}}}f={\\\\int f\\\\,d\\\\gamma }\\\\)</span> is defined by Gaussian measure <span>\\\\(\\\\gamma \\\\)</span> on a real separable Banach space <i>X</i>, using Gross’s theory of an abstract Wiener space <span>\\\\(\\\\jmath :H\\\\looparrowright X\\\\)</span> with the reproducing Hilbert space <i>H</i>. It is established the explicit formula for Hamiltonian <span>\\\\(\\\\mathfrak {A}\\\\)</span> in the form of a closure of sums <span>\\\\({\\\\sum [\\\\mathfrak {h}_2(\\\\phi _j)+\\\\mathbb {1}_j]}\\\\)</span> with the 2nd-degree Hermite polynomial <span>\\\\(\\\\mathfrak {h}_2\\\\)</span> from Gaussian variables <span>\\\\(\\\\phi _j\\\\)</span> and number operators <span>\\\\(\\\\mathbb {1}_j\\\\)</span> generated by the basis <span>\\\\((\\\\mathfrak {e}_j)\\\\subset H\\\\)</span> in the probability space <span>\\\\((X,\\\\mathcal {B},\\\\gamma )\\\\)</span> with Borel’s field <span>\\\\(\\\\mathcal {B}\\\\)</span> created by <span>\\\\(\\\\jmath \\\\)</span>. The Jackson inequalities with explicit constants for best approximations of <span>\\\\(\\\\mathfrak {A}\\\\)</span> are established.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01108-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01108-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01108-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了Schrödinger-type问题 \(w'_t=\text {i}\mathfrak {A} w\), \(w(0)=f\), \({(t>0)}\) 在高斯希尔伯特空间中 \(L^2_\mathbb {C}(X,\mathcal {B},\gamma )\) 有唯一的解 \({e}^{\text {i}t\mathfrak {A}}f=\frac{1}{\sqrt{4\pi t}}{\mathop {\mathbb {E}}}_xe ^{-\frac{1}{4t}\Vert x\Vert _X^2}\mathcal {W}_{\text {i}x}f\),其中半群 \({e}^{\text {i}t\mathfrak {A}}\) 是不可约的,通过Weyl对交织在一起 \(\left\{ \mathcal {W}_{\text {i}x}:x\in X\right\} \) 用空间上的移位和乘法坐标组 \(\mathcal {H}^2_\mathbb {C}\) 上的希尔伯特-施密特解析泛函 \({H\oplus \text {i}H}\). 期望 \({\mathop {\mathbb {E}}}f={\int f\,d\gamma }\) 是由高斯测度定义的吗 \(\gamma \) 利用抽象Wiener空间的Gross理论,在实可分离的Banach空间X上 \(\jmath :H\looparrowright X\) 利用再现的希尔伯特空间h,建立了哈密顿量的显式公式 \(\mathfrak {A}\) 以和的闭包形式 \({\sum [\mathfrak {h}_2(\phi _j)+\mathbb {1}_j]}\) 用二阶埃尔米特多项式 \(\mathfrak {h}_2\) 来自高斯变量 \(\phi _j\) 还有数字运算符 \(\mathbb {1}_j\) 由基础产生 \((\mathfrak {e}_j)\subset H\) 在概率空间中 \((X,\mathcal {B},\gamma )\) 博雷尔的田地 \(\mathcal {B}\) 由 \(\jmath \). 的最佳近似的带有显式常数的Jackson不等式 \(\mathfrak {A}\) 都是既定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schrödinger-type semigroups intertwined by Weyl pairs on abstract Wiener spaces

It is proven that Schrödinger-type problem \(w'_t=\text {i}\mathfrak {A} w\), \(w(0)=f\), \({(t>0)}\) in the Gaussian Hilbert space \(L^2_\mathbb {C}(X,\mathcal {B},\gamma )\) has the unique solution \({e}^{\text {i}t\mathfrak {A}}f=\frac{1}{\sqrt{4\pi t}}{\mathop {\mathbb {E}}}_xe ^{-\frac{1}{4t}\Vert x\Vert _X^2}\mathcal {W}_{\text {i}x}f\), where the semigroup \({e}^{\text {i}t\mathfrak {A}}\) is irreducible-intertwined via Weyl pairs \(\left\{ \mathcal {W}_{\text {i}x}:x\in X\right\} \) with the shift and multiplication coordinate groups on the space \(\mathcal {H}^2_\mathbb {C}\) of Hilbert-Schmidt analytic functionals on \({H\oplus \text {i}H}\). The expectation \({\mathop {\mathbb {E}}}f={\int f\,d\gamma }\) is defined by Gaussian measure \(\gamma \) on a real separable Banach space X, using Gross’s theory of an abstract Wiener space \(\jmath :H\looparrowright X\) with the reproducing Hilbert space H. It is established the explicit formula for Hamiltonian \(\mathfrak {A}\) in the form of a closure of sums \({\sum [\mathfrak {h}_2(\phi _j)+\mathbb {1}_j]}\) with the 2nd-degree Hermite polynomial \(\mathfrak {h}_2\) from Gaussian variables \(\phi _j\) and number operators \(\mathbb {1}_j\) generated by the basis \((\mathfrak {e}_j)\subset H\) in the probability space \((X,\mathcal {B},\gamma )\) with Borel’s field \(\mathcal {B}\) created by \(\jmath \). The Jackson inequalities with explicit constants for best approximations of \(\mathfrak {A}\) are established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信