多晶材料数字化重构研究进展

IF 12.1 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bingbing Chen, Dongfeng Li, Peter Davies, Richard Johnston, Xiangyun Ge, Chenfeng Li
{"title":"多晶材料数字化重构研究进展","authors":"Bingbing Chen,&nbsp;Dongfeng Li,&nbsp;Peter Davies,&nbsp;Richard Johnston,&nbsp;Xiangyun Ge,&nbsp;Chenfeng Li","doi":"10.1007/s11831-025-10245-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 6","pages":"3447 - 3498"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-025-10245-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent Progress of Digital Reconstruction in Polycrystalline Materials\",\"authors\":\"Bingbing Chen,&nbsp;Dongfeng Li,&nbsp;Peter Davies,&nbsp;Richard Johnston,&nbsp;Xiangyun Ge,&nbsp;Chenfeng Li\",\"doi\":\"10.1007/s11831-025-10245-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 6\",\"pages\":\"3447 - 3498\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11831-025-10245-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-025-10245-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10245-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了多晶材料数字化重建的最新进展。数字重建既是多尺度建模的代表性体积元素,也是微观结构表征的定量数据来源。在多晶材料中存在三种主要类型的数字重建:(i)实验重建,通过使用破坏性或非破坏性方法重建实际的多晶微结构,将加工-结构-性能-性能联系起来;(ii)基于物理的模型,复制进化过程以建立处理-结构联系,包括元胞自动机、蒙特卡罗、顶点/前端跟踪、水平集、机器学习和相场方法;(iii)基于几何的模型,使用简单形态学、Voronoi镶嵌、椭球体填充、纹理合成、高阶、降阶和机器学习方法,为结构-性能-性能联系创建统计等效的多晶微结构集成。本文回顾了这些方法的主要特点、程序、优点和局限性,特别关注了它们在构建加工-结构-性能-性能联系方面的应用。最后,总结了计算材料工程框架下多晶材料数字化重建的结论、挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Progress of Digital Reconstruction in Polycrystalline Materials

This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.80
自引率
4.10%
发文量
153
审稿时长
>12 weeks
期刊介绍: Archives of Computational Methods in Engineering Aim and Scope: Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication. Review Format: Reviews published in the journal offer: A survey of current literature Critical exposition of topics in their full complexity By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信