Vijay K. Dubey , Collin E. Haese , Osman Gültekin , David Dalton , Manuel K. Rausch , Jan Fuhg
{"title":"基于图神经网络的可变形物体接触检测方法","authors":"Vijay K. Dubey , Collin E. Haese , Osman Gültekin , David Dalton , Manuel K. Rausch , Jan Fuhg","doi":"10.1016/j.cma.2025.118413","DOIUrl":null,"url":null,"abstract":"<div><div>Surrogate models for the rapid inference of nonlinear boundary value problems in mechanics are helpful in a broad range of engineering applications. However, effective surrogate modeling of applications involving the contact of deformable bodies, especially in the context of varying geometries, is still an open issue. In particular, existing methods are confined to rigid body contact or, at best, contact between rigid and soft objects with well-defined contact planes. Furthermore, they employ contact or collision detection filters that serve as a rapid test but use only the necessary and not sufficient conditions for detection. In this work, we present a graph neural network architecture that utilizes continuous collision detection and, for the first time, incorporates sufficient conditions designed for contact between soft deformable bodies. We test its performance on two benchmarks, including a problem in soft tissue mechanics of predicting the closed state of a bioprosthetic aortic valve. We find a regularizing effect on adding additional contact terms to the loss function, leading to better generalization of the network. These benefits hold for simple contact at similar planes and element normal angles, and complex contact at differing planes and element normal angles. We also demonstrate that the framework can handle varying reference geometries. However, such benefits come with high computational costs during training, resulting in a trade-off that may not always be favorable. We quantify the training cost and the resulting inference speedups on various hardware architectures. Importantly, our graph neural network implementation results in up to a hundred- to thousand-fold speedup on GPU, and twenty- to two hundred-fold speedup on CPU for our benchmark problems at inference.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"448 ","pages":"Article 118413"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural network surrogates for contacting deformable bodies with necessary and sufficient contact detection\",\"authors\":\"Vijay K. Dubey , Collin E. Haese , Osman Gültekin , David Dalton , Manuel K. Rausch , Jan Fuhg\",\"doi\":\"10.1016/j.cma.2025.118413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surrogate models for the rapid inference of nonlinear boundary value problems in mechanics are helpful in a broad range of engineering applications. However, effective surrogate modeling of applications involving the contact of deformable bodies, especially in the context of varying geometries, is still an open issue. In particular, existing methods are confined to rigid body contact or, at best, contact between rigid and soft objects with well-defined contact planes. Furthermore, they employ contact or collision detection filters that serve as a rapid test but use only the necessary and not sufficient conditions for detection. In this work, we present a graph neural network architecture that utilizes continuous collision detection and, for the first time, incorporates sufficient conditions designed for contact between soft deformable bodies. We test its performance on two benchmarks, including a problem in soft tissue mechanics of predicting the closed state of a bioprosthetic aortic valve. We find a regularizing effect on adding additional contact terms to the loss function, leading to better generalization of the network. These benefits hold for simple contact at similar planes and element normal angles, and complex contact at differing planes and element normal angles. We also demonstrate that the framework can handle varying reference geometries. However, such benefits come with high computational costs during training, resulting in a trade-off that may not always be favorable. We quantify the training cost and the resulting inference speedups on various hardware architectures. Importantly, our graph neural network implementation results in up to a hundred- to thousand-fold speedup on GPU, and twenty- to two hundred-fold speedup on CPU for our benchmark problems at inference.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"448 \",\"pages\":\"Article 118413\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525006851\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525006851","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Graph neural network surrogates for contacting deformable bodies with necessary and sufficient contact detection
Surrogate models for the rapid inference of nonlinear boundary value problems in mechanics are helpful in a broad range of engineering applications. However, effective surrogate modeling of applications involving the contact of deformable bodies, especially in the context of varying geometries, is still an open issue. In particular, existing methods are confined to rigid body contact or, at best, contact between rigid and soft objects with well-defined contact planes. Furthermore, they employ contact or collision detection filters that serve as a rapid test but use only the necessary and not sufficient conditions for detection. In this work, we present a graph neural network architecture that utilizes continuous collision detection and, for the first time, incorporates sufficient conditions designed for contact between soft deformable bodies. We test its performance on two benchmarks, including a problem in soft tissue mechanics of predicting the closed state of a bioprosthetic aortic valve. We find a regularizing effect on adding additional contact terms to the loss function, leading to better generalization of the network. These benefits hold for simple contact at similar planes and element normal angles, and complex contact at differing planes and element normal angles. We also demonstrate that the framework can handle varying reference geometries. However, such benefits come with high computational costs during training, resulting in a trade-off that may not always be favorable. We quantify the training cost and the resulting inference speedups on various hardware architectures. Importantly, our graph neural network implementation results in up to a hundred- to thousand-fold speedup on GPU, and twenty- to two hundred-fold speedup on CPU for our benchmark problems at inference.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.