无服务器边缘计算功能卸载的盈利函数服务定价方法

IF 8 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Siyuan Liu , Li Pan , Shijun Liu
{"title":"无服务器边缘计算功能卸载的盈利函数服务定价方法","authors":"Siyuan Liu ,&nbsp;Li Pan ,&nbsp;Shijun Liu","doi":"10.1016/j.jnca.2025.104338","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, edge computing services have continued to develop and have been better integrated with serverless computing, leading to the improvement of the performance and concurrent request handling capabilities of edge servers. Therefore, an increasing number of IoT devices are willing to pay a certain amount of service processing fees to offload some computing tasks to edge servers for execution, with the aim of meeting their latency requirements. However, the computing capacity and storage space of edge servers at a single base station are still limited. Therefore, base stations must decide which task images to cache for future execution and price these computing services to control the computing offloading of IoT devices, so as to maximize their expected profit under the constraints of limited computing capacity and memory space. In this paper, we stand from the perspective of base stations and formulate the caching and pricing of function images at a base station, as well as the function offloading process of IoT devices, as a Markov Decision Process (MDP). We adopt a Proximal Policy Optimization (PPO)-based function service pricing adjustment algorithm to optimize the profit of base stations. Finally, we evaluate our approach through simulation experiments and compare it with baseline methods. The results show that our approach can significantly improve base stations’ expected profit in various scenarios.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"244 ","pages":"Article 104338"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A profit-effective function service pricing approach for serverless edge computing function offloading\",\"authors\":\"Siyuan Liu ,&nbsp;Li Pan ,&nbsp;Shijun Liu\",\"doi\":\"10.1016/j.jnca.2025.104338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, edge computing services have continued to develop and have been better integrated with serverless computing, leading to the improvement of the performance and concurrent request handling capabilities of edge servers. Therefore, an increasing number of IoT devices are willing to pay a certain amount of service processing fees to offload some computing tasks to edge servers for execution, with the aim of meeting their latency requirements. However, the computing capacity and storage space of edge servers at a single base station are still limited. Therefore, base stations must decide which task images to cache for future execution and price these computing services to control the computing offloading of IoT devices, so as to maximize their expected profit under the constraints of limited computing capacity and memory space. In this paper, we stand from the perspective of base stations and formulate the caching and pricing of function images at a base station, as well as the function offloading process of IoT devices, as a Markov Decision Process (MDP). We adopt a Proximal Policy Optimization (PPO)-based function service pricing adjustment algorithm to optimize the profit of base stations. Finally, we evaluate our approach through simulation experiments and compare it with baseline methods. The results show that our approach can significantly improve base stations’ expected profit in various scenarios.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"244 \",\"pages\":\"Article 104338\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804525002358\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525002358","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,边缘计算服务不断发展,并与无服务器计算更好地集成在一起,使得边缘服务器的性能和并发请求处理能力不断提高。因此,越来越多的物联网设备愿意支付一定的服务处理费,将一些计算任务卸载给边缘服务器执行,以满足其延迟需求。但是,单个基站的边缘服务器的计算能力和存储空间仍然是有限的。因此,基站必须决定缓存哪些任务映像以供未来执行,并对这些计算服务进行定价,以控制物联网设备的计算卸载,从而在有限的计算能力和内存空间约束下实现预期利润最大化。本文从基站的角度出发,将基站功能映像的缓存和定价以及物联网设备的功能卸载过程表述为马尔可夫决策过程(Markov Decision process, MDP)。采用一种基于近端策略优化(PPO)的函数服务定价调整算法来优化基站的利润。最后,我们通过模拟实验来评估我们的方法,并将其与基线方法进行比较。结果表明,该方法可以显著提高基站在各种场景下的预期利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A profit-effective function service pricing approach for serverless edge computing function offloading
In recent years, edge computing services have continued to develop and have been better integrated with serverless computing, leading to the improvement of the performance and concurrent request handling capabilities of edge servers. Therefore, an increasing number of IoT devices are willing to pay a certain amount of service processing fees to offload some computing tasks to edge servers for execution, with the aim of meeting their latency requirements. However, the computing capacity and storage space of edge servers at a single base station are still limited. Therefore, base stations must decide which task images to cache for future execution and price these computing services to control the computing offloading of IoT devices, so as to maximize their expected profit under the constraints of limited computing capacity and memory space. In this paper, we stand from the perspective of base stations and formulate the caching and pricing of function images at a base station, as well as the function offloading process of IoT devices, as a Markov Decision Process (MDP). We adopt a Proximal Policy Optimization (PPO)-based function service pricing adjustment algorithm to optimize the profit of base stations. Finally, we evaluate our approach through simulation experiments and compare it with baseline methods. The results show that our approach can significantly improve base stations’ expected profit in various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信