无自交的测地线环和正交测地线弦

IF 1.3 2区 数学 Q1 MATHEMATICS
Hans-Bert Rademacher
{"title":"无自交的测地线环和正交测地线弦","authors":"Hans-Bert Rademacher","doi":"10.1016/j.na.2025.113952","DOIUrl":null,"url":null,"abstract":"<div><div>We show that for a generic Riemannian metric on a compact manifold of dimension <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> all geodesic loops based at a fixed point have no self-intersections. We also show that for an open and dense subset of the space of Riemannian metrics on an <span><math><mi>n</mi></math></span>-disc with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and with a strictly convex boundary there are <span><math><mi>n</mi></math></span> geometrically distinct orthogonal geodesic chords without self-intersections. We use a perturbation result for intersecting geodesic segments of the author Rademacher (2024) and a genericity statement due to Bettiol and Giambò (2010) and existence results for orthogonal geodesic chords by Giambò et al. (2018).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113952"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic loops and orthogonal geodesic chords without self-intersections\",\"authors\":\"Hans-Bert Rademacher\",\"doi\":\"10.1016/j.na.2025.113952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that for a generic Riemannian metric on a compact manifold of dimension <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> all geodesic loops based at a fixed point have no self-intersections. We also show that for an open and dense subset of the space of Riemannian metrics on an <span><math><mi>n</mi></math></span>-disc with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and with a strictly convex boundary there are <span><math><mi>n</mi></math></span> geometrically distinct orthogonal geodesic chords without self-intersections. We use a perturbation result for intersecting geodesic segments of the author Rademacher (2024) and a genericity statement due to Bettiol and Giambò (2010) and existence results for orthogonal geodesic chords by Giambò et al. (2018).</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113952\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002044\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002044","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在维数n≥3的紧化流形上的一般黎曼度量,所有基于不动点的测地线环都没有自交。我们还证明了对于n≥3且边界为严格凸的n-圆盘上的黎曼度量空间的开密子集,存在n条几何上不同的无自交的正交测地线弦。我们使用了作者Rademacher(2024)的相交测地线段的摄动结果、Bettiol和Giambò(2010)的一般性陈述以及Giambò等人(2018)的正交测地线弦的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic loops and orthogonal geodesic chords without self-intersections
We show that for a generic Riemannian metric on a compact manifold of dimension n3 all geodesic loops based at a fixed point have no self-intersections. We also show that for an open and dense subset of the space of Riemannian metrics on an n-disc with n3 and with a strictly convex boundary there are n geometrically distinct orthogonal geodesic chords without self-intersections. We use a perturbation result for intersecting geodesic segments of the author Rademacher (2024) and a genericity statement due to Bettiol and Giambò (2010) and existence results for orthogonal geodesic chords by Giambò et al. (2018).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信