基于cnn的土地覆盖分类统计方法评估城市爆炸脆弱性:以法国巴黎为例

IF 8.6 Q1 REMOTE SENSING
N. Regnier , V. Mungkung , L. Mezeix
{"title":"基于cnn的土地覆盖分类统计方法评估城市爆炸脆弱性:以法国巴黎为例","authors":"N. Regnier ,&nbsp;V. Mungkung ,&nbsp;L. Mezeix","doi":"10.1016/j.jag.2025.104878","DOIUrl":null,"url":null,"abstract":"<div><div>Explosions in urban areas pose serious risks to human life and infrastructure, emphasizing the need for accurate vulnerability mapping. While Computational Fluid Dynamics (CFD) is commonly used to model explosions, its complexity and high computational cost limit its use to small areas. This study proposes a novel method combining statistical modeling with land cover data processed by Convolutional Neural Networks (CNNs) to estimate blast and thermal radiation effects. Satellite imagery of Paris is used to classify Buildings, Roads, and Trees, each with a dedicated CNN model achieving up to 95% accuracy. Explosion effects under varying TNT weights are simulated to estimate casualties, structural damage, and costs. The method enables large-scale scenario analysis with minimal computational demand. Applied to Paris, the results demonstrate the model’s value for emergency planning, providing confidence intervals that account for uncertainty. This approach offers a scalable, data-efficient tool to support disaster preparedness and public safety decision-making.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"144 ","pages":"Article 104878"},"PeriodicalIF":8.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CNN-based statistical method for land cover classification to assess urban vulnerability to explosions: Case study of Paris, France\",\"authors\":\"N. Regnier ,&nbsp;V. Mungkung ,&nbsp;L. Mezeix\",\"doi\":\"10.1016/j.jag.2025.104878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Explosions in urban areas pose serious risks to human life and infrastructure, emphasizing the need for accurate vulnerability mapping. While Computational Fluid Dynamics (CFD) is commonly used to model explosions, its complexity and high computational cost limit its use to small areas. This study proposes a novel method combining statistical modeling with land cover data processed by Convolutional Neural Networks (CNNs) to estimate blast and thermal radiation effects. Satellite imagery of Paris is used to classify Buildings, Roads, and Trees, each with a dedicated CNN model achieving up to 95% accuracy. Explosion effects under varying TNT weights are simulated to estimate casualties, structural damage, and costs. The method enables large-scale scenario analysis with minimal computational demand. Applied to Paris, the results demonstrate the model’s value for emergency planning, providing confidence intervals that account for uncertainty. This approach offers a scalable, data-efficient tool to support disaster preparedness and public safety decision-making.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"144 \",\"pages\":\"Article 104878\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225005254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225005254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

城市地区的爆炸对人的生命和基础设施构成严重威胁,强调需要精确地绘制脆弱性地图。虽然计算流体动力学(CFD)通常用于模拟爆炸,但其复杂性和高昂的计算成本限制了其在小范围内的应用。本研究提出了一种将统计建模与卷积神经网络(cnn)处理的土地覆盖数据相结合的新方法来估计爆炸和热辐射效应。巴黎的卫星图像用于对建筑物、道路和树木进行分类,每个都有一个专用的CNN模型,准确率高达95%。模拟了不同TNT重量下的爆炸效果,以估计人员伤亡、结构损坏和成本。该方法能够以最小的计算需求进行大规模场景分析。应用于巴黎,结果证明了该模型对应急规划的价值,提供了考虑不确定性的置信区间。这种方法提供了一种可扩展的、数据高效的工具,以支持备灾和公共安全决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CNN-based statistical method for land cover classification to assess urban vulnerability to explosions: Case study of Paris, France
Explosions in urban areas pose serious risks to human life and infrastructure, emphasizing the need for accurate vulnerability mapping. While Computational Fluid Dynamics (CFD) is commonly used to model explosions, its complexity and high computational cost limit its use to small areas. This study proposes a novel method combining statistical modeling with land cover data processed by Convolutional Neural Networks (CNNs) to estimate blast and thermal radiation effects. Satellite imagery of Paris is used to classify Buildings, Roads, and Trees, each with a dedicated CNN model achieving up to 95% accuracy. Explosion effects under varying TNT weights are simulated to estimate casualties, structural damage, and costs. The method enables large-scale scenario analysis with minimal computational demand. Applied to Paris, the results demonstrate the model’s value for emergency planning, providing confidence intervals that account for uncertainty. This approach offers a scalable, data-efficient tool to support disaster preparedness and public safety decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信