游戏i-MARK的收敛技术

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Gabriel Nivasch, Oz Rubinstein
{"title":"游戏i-MARK的收敛技术","authors":"Gabriel Nivasch,&nbsp;Oz Rubinstein","doi":"10.1016/j.tcs.2025.115557","DOIUrl":null,"url":null,"abstract":"<div><div>The game of <span><math><mrow><mi>i</mi><mi>-MARK</mi></mrow></math></span> is an impartial combinatorial game introduced by Sopena (2016). The game is parametrized by two sets of positive integers <span><math><mi>S</mi></math></span>, <span><math><mi>D</mi></math></span>, where <span><math><mrow><mi>min</mi><mi>D</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. From position <span><math><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></math></span> one can move to any position <span><math><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, as long as <span><math><mrow><mi>n</mi><mo>−</mo><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, as well as to any position <span><math><mrow><mi>n</mi><mo>/</mo><mi>d</mi></mrow></math></span>, <span><math><mrow><mi>d</mi><mo>∈</mo><mi>D</mi></mrow></math></span>, as long as <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mi>d</mi></math></span> divides <span><math><mi>n</mi></math></span>. The game ends when no more moves are possible, and the last player to move is the winner. Sopena, and subsequently Friman and Nivasch (2021), characterized the Sprague–Grundy sequences of many cases of <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mi>S</mi><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span> with <span><math><mrow><mo>|</mo><mi>D</mi><mo>|</mo><mo>=</mo><mn>1</mn></mrow></math></span>. Friman and Nivasch also obtained some partial results for the case <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mo>{</mo><mn>1</mn><mo>}</mo><mo>,</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo><mo>)</mo></mrow></math></span>. In this paper we present a convergence technique that gives polynomial-time algorithms for the Sprague–Grundy sequence of many instances of <span><math><mrow><mi>i</mi><mi>-MARK</mi></mrow></math></span> with <span><math><mrow><mo>|</mo><mi>D</mi><mo>|</mo><mo>&gt;</mo><mn>1</mn></mrow></math></span>. In particular, we prove our technique works for all games <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo>}</mo></mrow><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1057 ","pages":"Article 115557"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convergence technique for the game i-MARK\",\"authors\":\"Gabriel Nivasch,&nbsp;Oz Rubinstein\",\"doi\":\"10.1016/j.tcs.2025.115557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The game of <span><math><mrow><mi>i</mi><mi>-MARK</mi></mrow></math></span> is an impartial combinatorial game introduced by Sopena (2016). The game is parametrized by two sets of positive integers <span><math><mi>S</mi></math></span>, <span><math><mi>D</mi></math></span>, where <span><math><mrow><mi>min</mi><mi>D</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. From position <span><math><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></math></span> one can move to any position <span><math><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, as long as <span><math><mrow><mi>n</mi><mo>−</mo><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, as well as to any position <span><math><mrow><mi>n</mi><mo>/</mo><mi>d</mi></mrow></math></span>, <span><math><mrow><mi>d</mi><mo>∈</mo><mi>D</mi></mrow></math></span>, as long as <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mi>d</mi></math></span> divides <span><math><mi>n</mi></math></span>. The game ends when no more moves are possible, and the last player to move is the winner. Sopena, and subsequently Friman and Nivasch (2021), characterized the Sprague–Grundy sequences of many cases of <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mi>S</mi><mo>,</mo><mi>D</mi><mo>)</mo></mrow></math></span> with <span><math><mrow><mo>|</mo><mi>D</mi><mo>|</mo><mo>=</mo><mn>1</mn></mrow></math></span>. Friman and Nivasch also obtained some partial results for the case <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mo>{</mo><mn>1</mn><mo>}</mo><mo>,</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo><mo>)</mo></mrow></math></span>. In this paper we present a convergence technique that gives polynomial-time algorithms for the Sprague–Grundy sequence of many instances of <span><math><mrow><mi>i</mi><mi>-MARK</mi></mrow></math></span> with <span><math><mrow><mo>|</mo><mi>D</mi><mo>|</mo><mo>&gt;</mo><mn>1</mn></mrow></math></span>. In particular, we prove our technique works for all games <span><math><mrow><mi>i</mi><mi>-MARK</mi><mo>(</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><msub><mi>d</mi><mn>2</mn></msub><mo>}</mo></mrow><mo>)</mo></mrow></math></span>.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1057 \",\"pages\":\"Article 115557\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004955\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004955","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

i-MARK游戏是Sopena(2016)引入的一种公正的组合游戏。博弈被参数化为两组正整数S, D,其中minD≥2。从位置n≥0,可以移动到任何位置n−s, s∈s,只要n−s≥0,也可以移动到任何位置n/d, d∈d,只要n>;0, d除n。当无法再移动时,游戏结束,最后移动的玩家就是赢家。Sopena和随后的Friman和Nivasch(2021)描述了许多i-MARK(S,D)病例|D|=1的Sprague-Grundy序列。Friman和Nivasch也得到了i-MARK({1},{2,3})的部分结果。本文提出了一种收敛技术,该技术给出了具有|D|>;1的i-MARK的许多实例的Sprague-Grundy序列的多项式时间算法。特别是,我们证明了我们的技术适用于所有游戏i-MARK({1},{d1,d2})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convergence technique for the game i-MARK
The game of i-MARK is an impartial combinatorial game introduced by Sopena (2016). The game is parametrized by two sets of positive integers S, D, where minD2. From position n0 one can move to any position ns, sS, as long as ns0, as well as to any position n/d, dD, as long as n>0 and d divides n. The game ends when no more moves are possible, and the last player to move is the winner. Sopena, and subsequently Friman and Nivasch (2021), characterized the Sprague–Grundy sequences of many cases of i-MARK(S,D) with |D|=1. Friman and Nivasch also obtained some partial results for the case i-MARK({1},{2,3}). In this paper we present a convergence technique that gives polynomial-time algorithms for the Sprague–Grundy sequence of many instances of i-MARK with |D|>1. In particular, we prove our technique works for all games i-MARK({1},{d1,d2}).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信