Asghar A. Asgharian Sardroud , Mohsen Ghasemi , Shuming Zhou
{"title":"修正泡状排序图在PMC和MM*模型下的1近邻可诊断性","authors":"Asghar A. Asgharian Sardroud , Mohsen Ghasemi , Shuming Zhou","doi":"10.1016/j.tcs.2025.115556","DOIUrl":null,"url":null,"abstract":"<div><div>The modified bubblesort graph, denoted as <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span>, is a noteworthy topological structure in the choice of interconnection networks. In this paper, we determine the <span><math><mi>h</mi></math></span>-extra connectivity of <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span>. Additionally, we evaluate the 1-good-neighbor diagnosability of modified bubblesort graphs under the PMC and <span><math><msup><mtext>MM</mtext><mo>*</mo></msup></math></span> models. Finally, we investigate the 1-good-neighbor non-inclusive diagnosability of <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1057 ","pages":"Article 115556"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 1-good-neighbour diagnosability of modified bubblesort graphs under the PMC and MM* models\",\"authors\":\"Asghar A. Asgharian Sardroud , Mohsen Ghasemi , Shuming Zhou\",\"doi\":\"10.1016/j.tcs.2025.115556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The modified bubblesort graph, denoted as <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span>, is a noteworthy topological structure in the choice of interconnection networks. In this paper, we determine the <span><math><mi>h</mi></math></span>-extra connectivity of <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span>. Additionally, we evaluate the 1-good-neighbor diagnosability of modified bubblesort graphs under the PMC and <span><math><msup><mtext>MM</mtext><mo>*</mo></msup></math></span> models. Finally, we investigate the 1-good-neighbor non-inclusive diagnosability of <span><math><mrow><mi>M</mi><msub><mi>B</mi><mi>n</mi></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1057 \",\"pages\":\"Article 115556\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004943\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004943","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The 1-good-neighbour diagnosability of modified bubblesort graphs under the PMC and MM* models
The modified bubblesort graph, denoted as , is a noteworthy topological structure in the choice of interconnection networks. In this paper, we determine the -extra connectivity of . Additionally, we evaluate the 1-good-neighbor diagnosability of modified bubblesort graphs under the PMC and models. Finally, we investigate the 1-good-neighbor non-inclusive diagnosability of .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.